Knowledge and Information Systems

, Volume 53, Issue 2, pp 439–477 | Cite as

A formal series-based unification of the frequent itemset mining approaches

  • Slimane Oulad-NaouiEmail author
  • Hadda Cherroun
  • Djelloul Ziadi
Regular Paper


Over the last two decades, a great deal of work has been devoted to the algorithmic aspects of the frequent itemset (FI) mining problem, leading to a phenomenal number of algorithms and associated implementations, each of which claims supremacy. Meanwhile, it is generally well agreed that developing a unifying theory is one of the most important issues in data mining research. Hence, our primary motivation for this work is to introduce a high-level formalism for this basic problem, which induces a unified vision of the algorithmic approaches presented so far. The key distinctive feature of the introduced model is that it combines, in one fashion, both the qualitative and the quantitative aspects of this basic problem. In this paper, we propose a new model for the FI-mining task based on formal series. In fact, we encode the itemsets as words over a sorted alphabet and express this problem by a formal series over the counting semiring \((\mathbb N,+,\times ,0,1)\), whose range represents the itemsets, and the coefficients are their supports. The aim is threefold: First, to define a clear, unified and extensible theoretical framework through which we can state the main FI-approaches. Second, to prove a convenient connection between the determinization of the acyclic weighted automaton that represents a transaction dataset and the computation of the associated collection of FI. Finally, to devise a first algorithmic transcription, baptized Wafi, of our model by means of weighted automata, which we evaluate against representative leading algorithms. The obtained results show the suitability of our formalism.


Data mining Frequent itemsets Formal series Weighted automata Algorithms Unification 



we would like to sincerely thank the anonymous reviewers for their time devoted to thoughtfully reading our manuscript, and for their various insightful remarks and comments which helped us to improve the quality of the paper. This work was supported by Algeria/South Africa joint project under code: A/AS-2013-002.

Supplementary material (727 kb)
Supplementary material 1 (zip 728 KB)


  1. 1.
    Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on management of data, Washington DC, USA, pp 207–216Google Scholar
  2. 2.
    Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: VLDB’94, proceedings of 20th international conference on very large data bases, 12–15 Sept 1994, Santiago de Chile, Chile, pp 487–499.
  3. 3.
    Hipp J, Güntzer U, Nakhaeizadeh G (2000) Algorithms for association rule mining–a general survey and comparison. Sigkdd Explor 2(1):58–64. doi: 10.1145/360402.360421 CrossRefGoogle Scholar
  4. 4.
    Goethals B, Zaki MJ (eds) (2003) FIMI ’03, In: Proceedings of the workshop on FIM Implementations, Melbourne, Florida, USA. CEUR workshop proceedings, vol. 90Google Scholar
  5. 5.
    Han J, Cheng H, Xin D, Yan X (2007) Frequent pattern mining: current status and future directions. Data Min Knowl Discov 15(1):55–86. doi: 10.1007/s10618-006-0059-1 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Borgelt C (2012) Frequent item set mining’. Wiley Interdisc Rew Data Min Knowl Discov 2(6):437–456. doi: 10.1002/widm.1074
  7. 7.
    Aggarwal CC, Bhuiyan M, Hasan MA (2014) Frequent pattern mining algorithms: a survey. In: Frequent pattern mining, pp 19–64 doi: 10.1007/978-3-319-07821-2_2
  8. 8.
    Zaki MJ (2000) Scalable algorithms for association mining. IEEE Trans Knowl Data Eng 12(3):372–390Google Scholar
  9. 9.
    Zaki MJ, Gouda K (2003) Fast vertical mining using diffsets. In: Proceedings of the Ninth ACM SIGKDD international conference on knowledge discovery and data mining, Washington, DC, USA, 24–27 Aug 2003, pp 326–335. doi: 10.1145/956750.956788
  10. 10.
    Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: Proceedings of the 2000 ACM SIGMOD international conference on management of data, 16–18 May 2000, Dallas, Texas, USA, pp 1–12. doi: 10.1145/342009.335372
  11. 11.
    Bayardo R (1998) Efficiently mining long patterns from databases. In: SIGMOD 1998, proceedings ACM SIGMOD international conference on management of data, 2–4 June 1998, Seattle, Washington, USA, pp 85–93. doi: 10.1145/276304.276313
  12. 12.
    Pasquier N, Bastide Y, Taouil R, Lakhal L (1999) Discovering frequent closed itemsets for association rules. In: Proceedings of the 7th international conference on database theory, ICDT ’99, Springer, Verlag, London, UK, pp 398–416.
  13. 13.
    Cheung DWL, Lee SD, Kao B (1997) A general incremental technique for maintaining discovered association rules. In: Proceedings of the fifth international conference on database systems for advanced applications (DASFAA). World Scientific Press, pp 185–194.
  14. 14.
    Valtchev P, Missaoui R, Godin R (2008) A framework for incremental generation of closed itemsets. Discrete Appl Math 156(6):924–949. doi: 10.1016/j.dam.2007.08.004 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Barbut M, Monjardet B (1970) Ordre et classification: algèbre et combinatoire. Classiques Hachette, Hachette.
  16. 16.
    Davey BA, Priestley HA (1990) Introduction to lattices and order. Cambridge University Press, Cambridge.
  17. 17.
    Godin R, Missaoui R, Alaoui H (1995) Incremental concept formation algorithms based on galois (concept) lattices. Comput Intell 11:246–267. doi: 10.1111/j.1467-8640.1995.tb00031.x CrossRefGoogle Scholar
  18. 18.
    Zaki MJ, Ogihara M (1998) Theoretical foundations of association rules. In: 3rd ACM SIGMOD workshop on research issues in data mining and knowledge discovery, June 1998Google Scholar
  19. 19.
    Yang Q, Wu X (2006) 10 challenging problems in data mining research. Int J Inf Technol Decis Mak 5(4):597–604. doi: 10.1142/S0219622006002258 CrossRefGoogle Scholar
  20. 20.
    Hoare T (1996) Unification of theories: a challenge for computing science. In: Haveraaen M, Owe O, Dahl O-J (eds) Recent trends in data type specification, 11th workshop on specification of abstract data types joint with the 8th COMPASS workshop, Oslo, Norway, 19–23 Sept 1995, selected papers, Springer, Berlin, Heidelberg, pp 49–57Google Scholar
  21. 21.
    Oulad-Naoui S, Cherroun H, Ziadi D (2015) A unifying polynomial model for efficient discovery of frequent itemsets. In: Proceedings of 4th international conference on data management technologies and applications, pp 49–59. doi: 10.5220/0005516200490059
  22. 22.
    Salomaa A, Soittola M, Bauer F, Gries D (1978) Automata-theoretic aspects of formal power series. Texts and monographs in computer science. Springer, Verlag.
  23. 23.
    Berstel J, Reutenauer C (1988) Rational series and their languages. EATCS monographs on theoretical computer science. Springer, Verlag.
  24. 24.
    Hopcroft JE, Motwani R, Ullman JD (2001) Introduction to automata theory, languages, and computation–Addison-Wesley series in computer science, 2nd edn. Addison-Wesley-Longman, LodonzbMATHGoogle Scholar
  25. 25.
    Pin J-E (1988) Tropical semirings. In: Gunawardena J (ed) Idempotency. Cambridge University Press, Cambridge, pp 50–69Google Scholar
  26. 26.
    Cheung W, Zaïane OR (2003) Incremental mining of frequent patterns without candidate generation or support constraint. In: 7th International database engineering and applications symposium (IDEAS 2003), July 16–18 2003, Hong Kong, China, pp 111–116. doi: 10.1109/IDEAS.2003.1214917
  27. 27.
    Goethals B (2004) Memory issues in frequent itemset mining. In: Proceedings of the 2004 ACM symposium on applied computing (SAC), Nicosia, Cyprus, 14-17 March 2004, pp 530–534Google Scholar
  28. 28.
    Totad SG, Geeta RB, Reddy PVGDP (2012) Batch incremental processing for fp-tree construction using fp-growth algorithm. Knowl Inf Syst 33(2):475–490. doi: 10.1007/s10115-012-0514-9 CrossRefGoogle Scholar
  29. 29.
    Droste M, Stüber T, Vogler H (2010) Weighted finite automata over strong bimonoids. Inf Sci 180(1):156–166. doi: 10.1016/j.ins.2009.09.003 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Pijls W, Kosters WA (2010) Mining frequent itemsets: a perspective from operations research. Stat Neerl. 64(4):367–387. doi: 10.1111/j.1467-9574.2010.00452.x MathSciNetCrossRefGoogle Scholar
  31. 31.
    Achar A, Laxman S, Sastry P (2012) A unified view of the apriori-based algorithms for frequent episode discovery. Knowl Inf Syst 31(2):223–250. doi: 10.1007/s10115-011-0408-2 CrossRefGoogle Scholar
  32. 32.
    Mannila H, Toivonen H, Verkamo AI (1997) Discovery of frequent episodes in event sequences. Data Min Knowl Discov 1(3):259–289. doi: 10.1023/A:1009748302351 CrossRefGoogle Scholar
  33. 33.
    Mohri M (2009) Weighted automata algorithms. In: Droste M, Kuich W, Vogler H (eds) Handbook of weighted automata, monographs in theoretical computer science. An EATCS series. Springer, Berlin, pp 213–254. doi: 10.1007/978-3-642-01492-5_6
  34. 34.
    Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng AFM, Liu B, Yu PS, Steinbach Zhou Z-H, M, Hand DJ, Steinberg D, (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14(1):1–37. doi: 10.1007/s10115-007-0114-2
  35. 35.
    Schmidt-Thieme L (2004) Algorithmic features of eclat.In: FIMI ’04, proceedings of the IEEE ICDM workshop on frequent itemset mining implementations, Brighton, UK, Nov 1.
  36. 36.
    Lv Deng Z-H, S-L, (2015) Prepost\({}^{\text{+}}\): an efficient n-lists-based algorithm for mining frequent itemsets via children-parent equivalence pruning. Expert Syst Appl 42(13):5424–5432. doi: 10.1016/j.eswa.2015.03.004
  37. 37.
    Cohen E, Halperin E, Kaplan H, Zwick U (2002) Reachability and distance queries via 2-hop labels. In: Proceedings of the thirteenth annual ACM-SIAM symposium on discrete algorithms, SODA ’02. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA pp 937–946Google Scholar
  38. 38.
    Deng Z-H, Wang Z (2010) A new fast vertical method for mining frequent patterns. Int J Comput Intell Syst 3(6):733–744. doi: 10.1080/18756891.2010.9727736
  39. 39.
    Wang Deng Z-H, Z, Jiang J-J, (2012) A new algorithm for fast mining frequent itemsets using n-lists. Sci China Inf Sci 55(9):2008–2030. doi: 10.1007/s11432-012-4638-z
  40. 40.
    Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn. The MIT Press, BostonzbMATHGoogle Scholar
  41. 41.
    fimdr (2003) Fimi repository for frequent itemset mining, implementations and datasets.
  42. 42.
    Lichman M (2013) UCI machine learning repository.
  43. 43.
    Fournier-Viger P, Lin JC-W, Gomariz A, Gueniche T, Soltani A, Deng Z, Lam HT (2016) The SPMF open-source data mining library version 2. Proceedings of 19th European Conference on Principles of Data Mining and Knowledge Discovery PKDD 2016, pp 36–40Google Scholar
  44. 44.
    Rácz B, Bodon F, Schmidt-Thieme L (2005) On benchmarking frequent itemset mining algorithms: From measurement to analysis. In: Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations, OSDM ’05, ACM, New York, NY, USA, pp 36–45. doi: 10.1145/1133905.1133911

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  1. 1.Laboratoire d’Informatique et de MathématiquesUniversité Amar TelidjiLaghouatAlgeria
  2. 2.Laboratoire LITIS, EA 4108Normandie UniversitéRouenFrance

Personalised recommendations