Advertisement

Knowledge and Information Systems

, Volume 51, Issue 3, pp 965–989 | Cite as

Language identification of multilingual posts from Twitter: a case study

  • Ferran PlaEmail author
  • Lluís-F. Hurtado
Regular Paper

Abstract

This paper describes a method for handling multi-class and multi-label classification problems based on the support vector machine formalism. This method has been applied to the language identification problem in Twitter. The system evaluation was performed mainly on a Twitter data set developed in the TweetLID workshop. This data set contains bilingual tweets written in the most commonly used Iberian languages (i.e., Spanish, Portuguese, Catalan, Basque, and Galician) as well as the English language. We address the following problems: (1) social media texts. We propose a suitable tokenization that processes the peculiarities of Twitter; (2) multilingual tweets. Since a tweet can belong to more than one language, we need to use a multi-class and multi-label classifier; (3) similar languages. We study the main confusions among similar languages; and (4) unbalanced classes. We propose threshold-based strategy to favor classes with less data. We have also studied the use of Wikipedia and the addition of new tweets in order to increase the training data set. Additionally, we have tested our system on Bergsma corpus, a collection of tweets in nine languages, focusing on confusable languages using the Cyrillic, Arabic, and Devanagari alphabets. To our knowledge, we obtained the best results published on the TweetLID data set and results that are in line with the best results published on Bergsma data set.

Keywords

Natural language processing Language identification Multi-label classification Support vector machines Twitter 

Notes

Acknowledgments

This work has been partially funded by the project ASLP-MULAN: Audio, Speech and Language Processing for Multimedia Analytics (MINECO TIN2014-54288-C4-3-R).

References

  1. 1.
    Baldwin T, Lui M (2010) Language identification: the long and the short of the matter. In: Human language technologies: the 2010 annual conference of the North American chapter of the association for computational linguistics, HLT ‘10. Association for Computational Linguistics, Stroudsburg, PA, pp 229–237Google Scholar
  2. 2.
    Bergsma S, McNamee P, Bagdouri M, Fink C, Wilson T (2012) Language identification for creating language-specific twitter collections. In: Proceedings of the second workshop on language in social media, LSM ‘12. Association for Computational Linguistics, Stroudsburg, PA, pp 65–74Google Scholar
  3. 3.
    Carter S, Weerkamp W, Tsagkias M (2013) Microblog language identification: overcoming the limitations of short, unedited and idiomatic text. Lang Resour Eval 47(1):195–215CrossRefGoogle Scholar
  4. 4.
    Cavnar WB, Trenkle JM (1994) N-gram-based text categorization. In: Proceedings of SDAIR-94, 3rd annual symposium on document analysis and information retrieval, pp. 161–175Google Scholar
  5. 5.
    Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297zbMATHGoogle Scholar
  6. 6.
    Gamallo P, García M, Sotelo S, Campos JRP (2014) Comparing ranking-based and naive bayes approaches to language detection on tweets. ‘TweetLID@SEPLN’, pp 12–16Google Scholar
  7. 7.
    Goldszmidt M, Najork M, Paparizos S (2013) Boot-strapping language identifiers for short colloquial postings. In: Proceeding of the European conference on machine learning and principles and practice of knowledge discovery in databases (ECMLPKDD 2013). SpringerGoogle Scholar
  8. 8.
    Grefenstette G (1995) Comparing two language identification schemes. In: 3rd international conference on statistical analysis of textural dataGoogle Scholar
  9. 9.
    Hurtado LF, Pla F, Giménez M, Arnal ES (2014) Elirf-upv en tweetlid: Identificación del idioma en twitter, In: Proceedings of the Tweet language identification workshop co-located with 30th conference of the Spanish society for natural language processing, TweetLID@SEPLN 2014, Girona, 16 Sept 2014, pp 35–38Google Scholar
  10. 10.
    Jauhiainen T, Lindén K, Jauhiainen H (2015) Language set identification in noisy synthetic multilingual documents. In: Gelbukh A (ed) Computational linguistics and intelligent text processing, vol 9041 of lecture notes in computer science. Springer International Publishing, pp 633–643Google Scholar
  11. 11.
    Joachims T (1998) Text categorization with support vector machines: learning with many relevant features. In: Nédellec C, Rouveirol C (eds) Proceedings of ECML-98, 10th European conference on machine learning, no. 1398. Springer, Heidelberg, pp 137–142Google Scholar
  12. 12.
    Liu B (2012) Sentiment analysis and opinion mining. A comprehensive introduction and survey. Morgan & Claypool Publishers, San RafaelGoogle Scholar
  13. 13.
    Ljubešić N, Mikelić N, Boras D (2007) Language identification: How to distinguish similar languages, In: Lužar-Stifter V, Hljuz Dobrić V (eds), Proceedings of the 29th international conference on information technology interfaces. SRCE University Computing Centre, Zagreb, pp 541–546Google Scholar
  14. 14.
    Lui M, Baldwin T (2014) Accurate language identification of twitter messages. In: Proceedings of the EACL 2014 workshop on language analysis in social media (LASM 2014), pp 17–25Google Scholar
  15. 15.
    Lui M, Lau JH, Baldwin T (2014) Automatic detection and language identification of multilingual documents. Trans Assoc Comput Linguist 2:27–40Google Scholar
  16. 16.
    Nguyen D, Dogruoz AS (2014) Word level language identification in online multilingual communication. In: Proceedings of the 2013 conference on empirical methods in natural language processingGoogle Scholar
  17. 17.
    O’Connor B, Krieger M, Ahn D (2010) Tweetmotif: exploratory search and topic summarization for twitter. In: Cohen WW, Gosling S (eds) Proceedings of the fourth international conference on weblogs and social media, ICWSM 2010, Washington, DC. The AAAI Press, 23–26 May 2010Google Scholar
  18. 18.
    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830MathSciNetzbMATHGoogle Scholar
  19. 19.
    Pla F, Hurtado L-F (2014) Political tendency identification in twitter using sentiment analysis techniques. In: Proceedings of COLING 2014, the 25th international conference on computational linguistics: technical papers. Dublin City University and Association for Computational Linguistics, Dublin, pp 183–192Google Scholar
  20. 20.
    Prager JM (1999) Linguini: language identification for multilingual documents. J Manage Inf Syst 16(3):71–101CrossRefGoogle Scholar
  21. 21.
    Ramón Quevedo J, Luaces O, Bahamonde A (2012) Multilabel classifiers with a probabilistic thresholding strategy. Pattern Recogn 45(2):876–883zbMATHGoogle Scholar
  22. 22.
    Rao D, Yarowsky D, Shreevats A, Gupta M (2010) Classifying latent user attributes in twitter. In: Proceedings of the 2nd international workshop on search and mining user-generated contents, SMUC ‘10. ACM, New York, NY, pp 37–44Google Scholar
  23. 23.
    Sebastiani F (2002) Machine learning in automated text categorization. ACM Comput Surv 34(1):1–47CrossRefGoogle Scholar
  24. 24.
    Tsoumakas G, Katakis I (2007) Multi-label classification: an overview. Int J Data Warehous Min 2007:1–13CrossRefGoogle Scholar
  25. 25.
    Zubiaga A, Vicente IS, Gamallo P, Campos JRP, Loinaz IA, Aranberri N, Ezeiza A Fresno-Fernández V (2014) Overview of tweetlid: Tweet language identification at SEPLN 2014. In: Proceedings of the Tweet language identification workshop co-located with 30th conference of the Spanish society for natural language processing. TweetLID@SEPLN 2014, Girona, Spain, 16 Sept 2014, pp 1–11Google Scholar
  26. 26.
    Zubiaga A, San Vicente I, Gamallo P, Pichel JR, Alegria I, Aranberri N, Ezeiza A, Fresno V (2015) TweetLID: a benchmark for tweet language identification. J Lang Res Eval. Springer, pp 1–38. doi: 10.1007/s10579-015-9317-4

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.Departament de Sistemes Informàtics i ComputacióUniversitat Politècnica de ValènciaValènciaSpain

Personalised recommendations