Skip to main content

Optimal WCDMA network planning by multiobjective evolutionary algorithm with problem-specific genetic operation

Abstract

The wideband code division multiple access (WCDMA) network planning problem requires to determine the location and the configuration parameters of the base stations (BSs) so as to maximize the capacity and minimize the installation cost. This problem can be formulated as a complex set covering problem. Compared to the classical set covering problems, the coverage area of each BS is unknown in advance. This makes that the selection of each BS location and configuration parameters is determined by the location and configuration parameters of the neighbor BSs. Accordingly, we will conduct a competition and cooperation model based on the re-covered area of the BSs to measure the relationship of the BSs. Then, an efficient genetic operation based on this model is proposed to generate new-quality solutions. Further, four BS configuration parameters, i.e., the antenna height, antenna tilt, sector orientation and pilot signal power, are taken into account as well. Since there are too many combination levels of the configuration parameters, an encoding method based on orthogonal design is presented to reduce the search space. Subsequently, we merge the proposed encoding method and genetic operation into the multiobjective evolutionary algorithm-based decomposition (MOEA/D-M2M) to solve the WCDMA network planning problem. Simulation results show the efficacy of the proposed encoding and genetic operation in comparison with the existing counterpart.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Amaldi E, Capone A, Malucelli F, Signori F (2002) UMTS radio planning: optimizing base station configuration. In: Proceedings of IEEE 56th vehicular technology conference, vol 2, pp 768–772

  2. Amaldi E, Capone A, Malucelli F, Signori F (2003) A mathematical programming approach for WCDMA radio planning with uplink and downlink constraints. In: Proceedings of IEEE 58th vehicular technology conference, vol 2, pp 806–810

  3. Amaldi E, Capone A, Malucelli F (2008) Radio planning and coverage optimization of 3G cellular networks. Wirel Netw 14(4):435–447

    Article  Google Scholar 

  4. Apiletti D, Baralis E, Cerquitelli T (2010) Energy-saving models for wireless sensor networks. Knowl Inf Syst 28(3):615–644

    Article  Google Scholar 

  5. Bader J, Zitzler E (2011) Hype: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19(1):45–76

    Article  Google Scholar 

  6. Berruto E, Gudmundson M, Menolascino R, Mohr W, Pizarroso M (1998) Research activities on UMTS radio interface, network architectures, and planning. IEEE Commun Mag 36(2):82–95

    Article  Google Scholar 

  7. Büsing C, DAndreagiovanni F (2012) New results about multi-band uncertainty in robust optimization. In: Experimental algorithms. Springer, Berlin, pp 63–74

  8. Capone A, Chen L, Gualandi S, Yuan D (2011) A new computational approach for maximum link activation in wireless networks under the SINR model. IEEE Trans Wirel Commun 10(5):1368–1372

    Article  Google Scholar 

  9. Castro JP (2001) The UMTS network and radio access technology. Wiley, New York

    Book  Google Scholar 

  10. Cheung YM (2005) Maximum weighted likelihood via rival penalized em for density mixture clustering with automatic model selection. IEEE Trans Knowl Data Eng 17(6):750–761

    Article  Google Scholar 

  11. Cheung YM, Zeng H (2009) Local kernel regression score for selecting features of high-dimensional data. IEEE Trans Knowl Data Eng 21(12):1798–1802

    Article  Google Scholar 

  12. Chong SK, Gaber MM, Krishnaswamy S, Loke SW (2011) Energy conservation in wireless sensor networks: a rule-based approach. Knowl Inf Syst 28(3):579–614

    Article  Google Scholar 

  13. Claßen G, Koster AM, Schmeink A (2013) A robust optimisation model and cutting planes for the planning of energy-efficient wireless networks. Comput Oper Res 40(1):80–90

    MathSciNet  Article  Google Scholar 

  14. Cornuéjols G (2008) Valid inequalities for mixed integer linear programs. Math Program 112(1):3–44

    MathSciNet  Article  MATH  Google Scholar 

  15. COST231 (1991) Urban transmission loss models for mobile radio in the 900 and 1800 MHZ bands.In: European cooperation in the field of scientific and technical research EURO-COST231.

  16. D’Andreagiovanni F (2011) On improving the capacity of solving large-scale wireless network design problems by genetic algorithms. In: Applications of evolutionary computation. Springer, Berlin, pp 11–20

  17. D’Andreagiovanni F (2012) Pure 0–1 programming approaches to wireless network design. 4OR: Q J Oper Res 10(2):211–212

    Article  Google Scholar 

  18. D’Andreagiovanni F, Mannino C, Sassano A (2011) Negative cycle separation in wireless network design. In: Network optimization, Springer, Berlin, pp 51–56

  19. D’Andreagiovanni F, Mannino C, Sassano A (2013) GUB covers and power-indexed formulations for wireless network design. Manag Sci 59(1):142–156

    Article  Google Scholar 

  20. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut Comput 6(2):182–197

    Article  Google Scholar 

  21. Eisenblatter A, Geerdes HF (2006) Wireless network design: solution-oriented modeling and mathematical optimization. IEEE Wirel Commun 13(6):8–14

    Article  Google Scholar 

  22. Garzia F, Perna C, Cusani R (2010) Optimization of UMTS network planning using genetic algorithms. Commun Netw 2(3):193–199

    Article  Google Scholar 

  23. Gong W, Cai Z (2009) An improved multiobjective differential evolution based on pareto-adaptive\(\epsilon \)-dominance and orthogonal design. Eur J Oper Res 198(2):576–601

  24. Gu F, Liu HL, Li M (2009) Evolutionary algorithm for the radio planning and coverage optimization of 3G cellular networks. In: Proceedings of the international conference on computational intelligence and security, vol 2, pp 109–113

  25. Hatay M (1980) Empirical formula for propagation loss in land mobile radio services. IEEE Trans Veh Technol 29(3):317–325

    Article  Google Scholar 

  26. He Z, You X, Zhou L, Cheung YM, Du J (2010) Writer identification using fractal dimension of wavelet subbands in gabor domain. Integr Comput Aided Eng 17(2):157–165

    Google Scholar 

  27. Holma H, Toskala A et al (2000) WCDMA for UMTS. Wiley, London

    Google Scholar 

  28. Hosage C, Goodchild M (1986) Discrete space location-allocation solutions from genetic algorithms. Ann Oper Res 6(2):35–46

    Article  Google Scholar 

  29. Jaramillo JH, Bhadury J, Batta R (2002) On the use of genetic algorithms to solve location problems. Comput Oper Res 29(6):761–779

    MathSciNet  Article  MATH  Google Scholar 

  30. Jia H, Cheung YM, Liu J (2014) Cooperative and penalized competitive learning with application to kernel-based clustering. Pattern Recognit 47:3060–3069

    Article  Google Scholar 

  31. Kennington J, Olinick E, Rajan D (2010) Wireless network design: optimization models and solution procedures. Springer, Berlin

    Google Scholar 

  32. Koutitas G (2010) Green network planning of single frequency networks. IEEE Trans Broadcast 56(4):541–550

  33. Laiho J, Wacker A, Novosad T (2006) Radio network planning and optimisation for UMTS. Wiley, London

    Google Scholar 

  34. Lan WG, Wong MK, Chee KK, Sin YM (1995) Orthogonal array design as a chemometric method for the optimization of analytical procedures. Part 3. Five-level design and its application in a polarographic reaction system for selenium determination. Analyst 120:273–279

    Article  Google Scholar 

  35. Lee CY, Kang HG (2000) Cell planning with capacity expansion in mobile communications: a tabu search approach. IEEE Trans Veh Technol 49(5):1678–1691

    Article  Google Scholar 

  36. Liu HL, Gu F, Cheung YM, Xie S, Zhang J (2014a) On solving WCDMA network planning using iterative power control scheme and evolutionary multiobjective algorithm. IEEE Comput Intell Mag 9(1):44–52

    Article  Google Scholar 

  37. Liu HL, Gu F, Zhang Q (2014b) Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans Evol Comput 18(3):450–455

    Article  Google Scholar 

  38. Mannino C, Rossi F, Smriglio S (2006) The network packing problem in terrestrial broadcasting. Oper Res 54(4):611–626

    Article  MATH  Google Scholar 

  39. Martins F, Carrano E, Wanner E, Takahashi R, Mateus G (2011) A hybrid multiobjective evolutionary approach for improving the performance of wireless sensor networks. IEEE Sens J 11(3):545–554

    Article  Google Scholar 

  40. Miettinen K (1999) Nonlinear multiobjective optimization, vol 12. Springer, Berlin

    MATH  Google Scholar 

  41. Montgomery DC, Montgomery DC, Montgomery DC (1997) Design and analysis of experiments, vol 7. Wiley, New York

    MATH  Google Scholar 

  42. Naoum-Sawaya J, Elhedhli S (2010) A nested benders decomposition approach for telecommunication network planning. Nav Res Logist 57(6):519–539

    MathSciNet  Article  MATH  Google Scholar 

  43. Olinick EV, Rosenberger JM (2008) Optimizing revenue in CDMA networks under demand uncertainty. Eur J Oper Res 186(2):812–825

    MathSciNet  Article  MATH  Google Scholar 

  44. Resende MG, Pardalos P (2008) Handbook of optimization in telecommunications. Springer, Berlin

    Google Scholar 

  45. Yang J, Zhang J, Aydin ME, Wu JY (2007) A novel programming model and optimisation algorithms for WCDMA networks. In: Proceedings of IEEE 65th vehicular technology conference, pp 1182–1187

  46. Zakrzewska A, D’Andreagiovanni F, Ruepp S, Berger MS (2013) Biobjective optimization of radio access technology selection and resource allocation in heterogeneous wireless networks. In: Proceeding of 11th international symposium on modeling and optimization in mobile, ad hoc and wireless networks, pp 652–658

  47. Zeng H, Cheung YM (2009) A new feature selection method for gaussian mixture clustering. Pattern Recognit 42(2):243–250

    Article  MATH  Google Scholar 

  48. Zeng H, Cheung YM (2011) Feature selection and kernel learning for local learning-based clustering. IEEE Trans Pattern Anal Mach Intell 33(8):1532–1547

    Article  Google Scholar 

  49. Zeng H, Cheung YM (2012) Semi-supervised maximum margin clustering with pairwise constraints. IEEE Trans Knowl Data Eng 24(5):926–939

    Article  Google Scholar 

  50. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  51. Zimmermann J, Höns R, Mühlenbein H (2003) ENCON: an evolutionary algorithm for the antenna placement problem. Comput Ind Eng 44(2):209–226

    Article  Google Scholar 

  52. Zitzler E, Thiele L, Laumanns M, Fonseca CM, Da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (61273192, 61333013, 61272366), the Natural Science Foundation of Guangdong Province (S2012010008813, S2011030002886), the projects of Science and Technology of Guangzhou Province (2014J4100209), and the Faculty Research Grant of Hong Kong Baptist University with the Project Code: FRG1/14-15/041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-lin Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, F., Liu, Hl., Cheung, YM. et al. Optimal WCDMA network planning by multiobjective evolutionary algorithm with problem-specific genetic operation. Knowl Inf Syst 45, 679–703 (2015). https://doi.org/10.1007/s10115-014-0799-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-014-0799-y

Keywords

  • Set covering problem
  • Wireless network planning
  • Multiobjective evolutionary algorithm
  • Orthogonal design