Knowledge and Information Systems

, Volume 43, Issue 3, pp 657–688 | Cite as

Online data-driven anomaly detection in autonomous robots

  • Eliahu Khalastchi
  • Meir Kalech
  • Gal A. Kaminka
  • Raz Lin
Regular Paper


The use of autonomous robots is appealing for tasks, which are dangerous to humans. Autonomous robots might fail to perform their tasks since they are susceptible to varied sorts of faults such as point and contextual faults. Not all faults can be known in advance, and hence, anomaly detection is required. In this paper, we present an online data-driven anomaly detection approach (ODDAD) for autonomous robots. ODDAD is suitable for the dynamic nature of autonomous robots since it declares a fault based only on data collected online. In addition, it is unsupervised, model free and domain independent. ODDAD proceeds in three steps: data filtering, attributes grouping based on dependency between attributes and outliers detection for each group. Above a calculated threshold, an anomaly is declared. We empirically evaluate ODDAD in different domains: commercial unmanned aerial vehicles (UAVs), a vacuum-cleaning robot, a high-fidelity flight simulator and an electrical power system of a spacecraft. We show the significance and impact of each component of ODDAD . By comparing ODDAD to other state-of-the-art competing anomaly detection algorithms, we show its advantages.


Anomaly detection Robotics UAV UGV Unmanned vehicles Autonomous agents Unsupervised Model free Online Data driven ODDAD AI Fault detection 


  1. 1.
    Brotherton T, Mackey R (2001) Anomaly detector fusion processing for advanced military aircraft. In: IEEE proceedings of aerospace conference, vol 6, IEEE, pp 3125–3137Google Scholar
  2. 2.
    Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey, association for computing machinery (ACM) computing surveys 41(3):15:1–15:58. doi:10.1145/1541880.1541882
  3. 3.
    Cork L, Walker R (2007) Sensor fault detection for UAVs using a nonlinear dynamic model and the imm-ukf algorithm. In: Information, decision and control (IDC’07), IEEE, pp 230–235Google Scholar
  4. 4.
    Craighead J, Murphy R, Burke J, Goldiez B (2007) A survey of commercial open source unmanned vehicle simulators. In: Proceedings of the IEEE international conference on robotics and automation, pp 852–857Google Scholar
  5. 5.
    Daigle MJ, Koutsoukos XD, Biswas G (2009) A qualitative event-based approach to continuous systems diagnosis. IEEE Trans Control Syst Technol 17(4):780–793CrossRefGoogle Scholar
  6. 6.
    Eski I, Erkaya S, Savas S, Yildirim S (2011) Fault detection on robot manipulators using artificial neural networks. Robot Comput Integr Manuf 27(1):115–123CrossRefGoogle Scholar
  7. 7.
    FlightGear (2013)
  8. 8.
    Goel P, Dedeoglu G, Roumeliotis SI, Sukhatme GS (2000) Fault detection and identification in a mobile robot using multiple model estimation and neural network. In: Proceedings of the IEEE international conference on robotics and automation, pp 2302–2309Google Scholar
  9. 9.
    Hido S, Tsuboi Y, Kashima H, Sugiyama M, Kanamori T (2011) Statistical outlier detection using direct density ratio estimation. Knowl Inf Syst 26(2):309–336CrossRefGoogle Scholar
  10. 10.
    Hofbaur M, Köb J, Steinbauer G, Wotawa F (2007) Improving robustness of mobile robots using model-based reasoning. J Intell Robot Syst 48(1):37–54. doi:10.1007/s10846-006-9102-0
  11. 11.
    Hwang I, Kim S, Kim Y, Seah CE (2010) A survey of fault detection, isolation, and reconfiguration methods. IEEE Trans Control Syst Technol 18(3):636–653CrossRefGoogle Scholar
  12. 12.
    Khalastchi E, Kaminka GA, Kalech M, Lin R (2011) Online anomaly detection in unmanned vehicles. In: Proceedings of the 10th international conference on autonomous agents and multiagent systems, AAMAS ’11, International foundation for Autonomous Agents and Multiagent Systems, pp 115–122.
  13. 13.
  14. 14.
    Laurikkala J, Juhola M, Kentala E, Lavrac N, Miksch S, Kavsek B (2000) Informal identification of outliers in medical data. In: Proceedings of the 5th international workshop on intelligent data analysis in medicine and pharmacology, pp 20–24.
  15. 15.
    Leveson NG, Turner CS (1993) An investigation of the therac-25 accidents. Computer 26(7):18–41CrossRefGoogle Scholar
  16. 16.
    Lin R, Khalastchi E, Kaminka GA (2010) Detecting anomalies in unmanned vehicles using the mahalanobis distance. In: Proceedings of the IEEE international conference on robotics and automation, IEEE, pp 3038–3044Google Scholar
  17. 17.
    Lishuang X, Tao C, Fang D (2011) Sensor fault diagnosis based on least squares support vector machine online prediction. In: IEEE conference on robotics, automation and mechatronics (RAM), IEEE, pp 275–279Google Scholar
  18. 18.
    Mahalanobis PC (1936) On the generalized distance in statistics. In: Proceedings of the National Institute of Sciences, vol 2, ppp 49–55Google Scholar
  19. 19.
    Manevitz LM, Yousef M (2002) One-class svms for document classification. J Mach Learn Res 2, pp 139–154.
  20. 20.
    Masud M, Woolam C, Gao J, Khan L, Han J, Hamlen K, Oza N (2012) Facing the reality of data stream classification: coping with scarcity of labeled data. Knowl Inf Syst 33(1): 213–244. doi:10.1007/s10115-011-0447-8
  21. 21.
    Oates T, Schmill MD, Gregory DE, Cohen PR (1995) Detecting complex dependencies in categorical data. In: Fisher D, Lenz H (eds) Learning from data: artificial intelligence and statistics, Springer, pp 185–195Google Scholar
  22. 22.
    Pearson K (1894) Contributions to the mathematical theory of evolution. Philos Trans R Soc Lond A 185:71–110CrossRefMATHGoogle Scholar
  23. 23.
    Pokrajac D, Lazarevic A, Latecki LJ (2007) Incremental local outlier detection for data streams. In: The symposium on computational intelligence and data mining, CIDM’07, IEEE, pp 504–515Google Scholar
  24. 24.
    Ratsch G, Mika S, Scholkopf B, Muller K-R (2002) Constructing boosting algorithms from SVMs: an application to one-class classification. IEEE Trans Pattern Anal Mach Intell 24(9):1184–1199CrossRefGoogle Scholar
  25. 25.
    Ruiz-del Solar J, Chown E, Ploeger PG (2011) RoboCup 2010: robot soccer world cup XIV, vol. 6556, Springer, BerlinGoogle Scholar
  26. 26.
    Sorton EF, Hammaker S (2005) Simulated flight testing of an autonomous unmanned aerial vehicle using flight-gear. American Institute of Aeronautics and Astronautics 2005–7083, Institute for Scientific ResearchGoogle Scholar
  27. 27.
    Steinbauer G (2013) A survey about faults of robots used in robocup. In: RoboCup 2012: robot soccer world cup XVI’, Springer, Berlin, pp 344–355Google Scholar
  28. 28.
    Steinbauer G, Mörth M, Wotawa F (2006) Real-time diagnosis and repair of faults of robot control software. In: Bredenfeld A, Jacoff A, Noda I, Takahashi Y (eds) RoboCup 2005: robot soccer world cup IX’, Springer, pp 13–23.
  29. 29.
    Steinwart I, Christmann A (2008) Support vector machines. Springer, BerlinMATHGoogle Scholar
  30. 30.
    Sundvall P, Jensfelt P (2006) Fault detection for mobile robots using redundant positioning systems. In: ICRA, pp 3781–3786Google Scholar
  31. 31.
    SVM light (2010).
  32. 32.
    Travé-Massuyès L (2014) Bridging control and artificial intelligence theories for diagnosis: a survey. Eng Appl Artif Intell 27:1–16CrossRefGoogle Scholar
  33. 33.
    Zaman S, Steinbauer G, Maurer J, Lepej P, Uran S (2013) An integrated model-based diagnosis and repair architecture for ros-based robot systems In: IEEE international conference on robotics and automation (ICRA), IEEE, pp 482–489Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Eliahu Khalastchi
    • 1
  • Meir Kalech
    • 1
  • Gal A. Kaminka
    • 2
  • Raz Lin
    • 2
  1. 1.Department of Information Systems EngineeringBen-Gurion University of the NegevBe’er ShevaIsrael
  2. 2.The MAVERICK Group, Department of Computer ScienceBar Ilan UniversityRamat GanIsrael

Personalised recommendations