Knowledge and Information Systems

, Volume 43, Issue 3, pp 583–597 | Cite as

A modified adaptive differential evolution algorithm for color image segmentation

  • Ahmad Khan
  • M. Arfan Jaffar
  • Ling Shao
Regular Paper


Image segmentation is an important low-level vision task. It is a perceptual grouping of pixels based on some similarity criteria. In this paper, a new differential evolution (DE) algorithm, modified adaptive differential evolution, is proposed for color image segmentation. The DE/current-to-pbest mutation strategy with optional external archive and opposition-based learning are used to diversify the search space and expedite the convergence process. Control parameters are automatically updated to appropriate values in order to avoid user intervention of parameters setting. To find an optimal number of clusters (the number of regions or segments), the average ratio of fuzzy overlap and fuzzy separation is used as a cluster validity index. The results demonstrate that the proposed technique outperforms state-of-the-art methods.


Differential evolution (DE) Segmentation Spatial fuzzy C-mean (sFCM) Archive Cluster center Crossover  Mutation 



We thank anonymous reviewers for their very useful comments and suggestions.


  1. 1.
    Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T (2002) A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 21(3):193–199CrossRefGoogle Scholar
  2. 2.
    Besag J (1986) On the statistical analysis of dirty pictures. J R Stat Soc B 48:259–302zbMATHMathSciNetGoogle Scholar
  3. 3.
    Beucher S, Meyer F (1993) The morphological approach to segmentation: the watershed transformation. Math Morphol Image Process 34:433–481Google Scholar
  4. 4.
    Capitaine HL, Frelicot C (2011) A cluster-validity index combining an overlap measure and a separation measure based on fuzzy-aggregation operators. IEEE Trans Fuzzy Syst 19(03):580–588CrossRefGoogle Scholar
  5. 5.
    Chuang KS (2006) Fuzzy C-means clustering with spatial information for image segmentation. Comput Med Imaging Graph 30:9–15CrossRefGoogle Scholar
  6. 6.
    Cohen L (1991) On active contour models and balloons. CVGIP Image Underst 53(2):211–218CrossRefzbMATHGoogle Scholar
  7. 7.
    Duda R, Hart P, Stork D (2001) Fast discovery of association rules. Pattern Classification (2nd ed). Wiley, Hoboken, NJGoogle Scholar
  8. 8.
    Felzenszwalb P, Huttenlocher D (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181CrossRefGoogle Scholar
  9. 9.
    Freixenet J, Munoz X, Raba D, Marti J Cufi X (2002) Yet another survey on image segmentation: region and boundary information integration. In: Proceedings of European conference on computer vision (ECCV 2002), Copenhagen, Denmark, May 2831, 2002. Lecture Notes in Computer Science 2352. Springer, Berlin, pp 408–422Google Scholar
  10. 10.
    Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331CrossRefGoogle Scholar
  11. 11.
    Klement E, Mesiar R (2005) Logical, algebraic, analytic, and probabilistic aspects of triangular norms. Elsevier, AmsterdamzbMATHGoogle Scholar
  12. 12.
    Kolmogorov V, Zabih R (2004) What energy functions can be minimized via graph cuts? IEEE Trans Pattern Anal Mach Intell 26(2):147–159CrossRefGoogle Scholar
  13. 13.
    Kov YB, Jolly M (2001) Interactive graph cuts for optimal boundary region segmentation of objects in \({N-D}\) images. In: Proceedings of eighth IEEE international conference on computer vision, 2001 (ICCV 2001), Jully 714, 2002. 1, pp 105–112Google Scholar
  14. 14.
    Li Y, Sun J, Tang CK, Shum HY (2004) Lazy snapping. ACM Trans Graph 23(3):303–308CrossRefGoogle Scholar
  15. 15.
    Li BN, Chui CK, Ong SH (2011) Integrating spatial fuzzy clustering with level set for autamated medical image segmentation. Comput Biol Med 41:1–10CrossRefGoogle Scholar
  16. 16.
    Liu MY, Tuzel O, Ramalingam S, Chellappa R (2011) Entropy rate superpixel segmentation. In: Proceedings of IEEE international conference on computer vision, (ICCV 2011), 2011, pp 2097–2104Google Scholar
  17. 17.
    Loo PK, Tan CL (2004) Adaptive region growing color segmentation for text using Irregular pyramid. In: Proceedings of 6th international workshop international workshop on document analysis systems, Florence, Italy, 2004, September 8–10. Lecture Notes in Computer Science 3163. Springer, Berlin, pp 264–275Google Scholar
  18. 18.
    Lucchese L, Mitra SK (2001), Color image segmentation: a state of the art survey. In: Proceedings of the Indian National Science Academy on image processing. Vis. Pattern Recognition vol 2, pp 207–221Google Scholar
  19. 19.
    Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of eighth IEEE international conference on computer vision, 2001 (ICCV 2001), Jully 714, 2001. 2, pp 416–423Google Scholar
  20. 20.
    Mascarilla L, Berthier M, Frelicot C (2008) A k-order fuzzy or operator for pattern classification with k-order ambiguity rejection. Fuzzy Sets Systems 159(15):2011–2029CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Meila M (2005) Comparing clusterings-An axiomatic view. In: ICML ’05 Proceedings of the 22nd international conference on Machine learning, New York, NY, USA, pp 577–584Google Scholar
  22. 22.
    Mortensen E, Barrett W (1998) Interactive segmentation with intelligent scissors. Graph Models Image Process 60(5):349–384CrossRefzbMATHGoogle Scholar
  23. 23.
    Ninga J, Zhanga L, Zhanga D, Wub C (2010) Interactive image segmentation by maximal similarity based region merging. Pattern Recognit 43:445–456CrossRefGoogle Scholar
  24. 24.
    Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-based differential evolution. IEEE Trans Evolut Comput 12(2):64–79CrossRefGoogle Scholar
  25. 25.
    Rother C, Kolmogorov V, Blake A (2004) Opposition-based differential evolution. ACM Trans Graphs 23(3):309–314CrossRefGoogle Scholar
  26. 26.
    Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905CrossRefGoogle Scholar
  27. 27.
    Tan KS, Isa NAM (2011) Color image segmentation using histogram thresholding fuzzy C-means hybrid approach. Pattern Recognit 44:1–15CrossRefzbMATHGoogle Scholar
  28. 28.
    Unnikrishnan R, Pantofaru C, Hebert M (2007) Toward objective evaluation of image segmentation algorithms. IEEE Trans Pattern Anal Mach Intell 29(6):929–944CrossRefGoogle Scholar
  29. 29.
    Vincent L, Soille P (1999) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13(6):583–598CrossRefGoogle Scholar
  30. 30.
    Xu C, Prince J (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Yang AY, Wright J, Sastry SS, Ma Y (2008), Unsupervised segmentation of natural images via lossy data compression. Comput Vis Image Underst 13(5):212–225Google Scholar
  32. 32.
    Zhang J, Sanderson AC (2009) ADE: adaptive differential evolution with optional external archive. IEEE Trans Evolut Comput 13(5):945–958CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.National University of Computer and Emerging SciencesIslamabadPakistan
  2. 2.College of Computer and Information SciencesAl Imam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
  3. 3.Department of Electronic and Electrical EngineeringUniversity of SheffieldSheffieldUK

Personalised recommendations