Knowledge and Information Systems

, Volume 40, Issue 2, pp 411–437 | Cite as

Computing and visualizing popular places

  • Marta Fort
  • J. Antoni Sellarès
  • Nacho Valladares
Regular Paper


Data analysis and knowledge discovery in trajectory databases is an emerging field with a growing number of applications such as managing traffic, planning tourism infrastructures, analyzing professional sport matches or better understanding wildlife. A well-known collection of patterns which can occur for a subset of trajectories of moving objects exists. In this paper, we study the popular places pattern, that is, locations that are visited by many moving objects. We consider two criteria, strong and weak, to establish either the exact number of times that an object has visited a place during its complete trajectory or whether it has visited the place, or not. To solve the problem of reporting popular places, we introduce the popularity map. The popularity of a point is a measure of how many times the moving objects of a set have visited that point. The popularity map is the subdivision, into regions, of a plane where all the points have the same popularity. We propose different algorithms to efficiently compute and visualize popular places, the so-called popular regions and their schematization, by taking advantage of the parallel computing capabilities of the graphics processing units. Finally, we provide and discuss the experimental results obtained with the implementation of our algorithms.


Movement patterns Popular places Computational geometry Graphics processing units 



We thank the reviewers for their suggestions and comments. Authors are partially supported by the Spanish MCI grant TIN2010-20590-C02-02.


  1. 1.
    Andersson M, Gudmundsson J, Laube P, Wolle T (2008) Reporting leaders and followers among trajectories of moving point objects. GeoInformatica 12(4):497–528CrossRefGoogle Scholar
  2. 2.
    Andrienko, GL, Andrienko NV (2008) A visual analytics approach to exploration of large amounts of movement data. In: Sebillo M, Vitiello G, Schaefer G (eds) VISUAL, lecture notes in computer science, vol 5188, Springer, pp 1–4Google Scholar
  3. 3.
    Benkert M, Djordjevic B, Gudmundsson J, Wolle T (2010) Finding popular places. Int J Comput Geom Appl (IJCGA) 20(1):19–42CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Benkert M, Gudmundsson J, Hübner F, Wolle T (2008) Reporting flock patterns. Comput Geom 41(3):111–125CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bogorny V, Shekhar S (2010) Spatial and spatio-temporal data mining. In: Proceedings of IEEE international conference on data mining ICDM’2010, p 1217Google Scholar
  6. 6.
    Coll N, Fort M, Madern N, Sellarès JA (2007) Multi-visibility maps of triangulated terrains. Int J Geogr Inf Sci 21(10):1115–1134CrossRefGoogle Scholar
  7. 7.
    Dartmouth College (2008) CRAWDAD. Accessed Apr 2013
  8. 8.
    Dodge S, Weibel R, Lautenschutz AK (2008) Towards a taxonomy of movement patterns. Inf Vis 7(3–4):240–252CrossRefGoogle Scholar
  9. 9.
    Fang W, Lu M, Xiao X, He B, Luo Q (2009) Frequent itemset mining on graphics processors. In: DaMoN ’09: proceedings of the fifth international workshop on data management on new hardware. ACM, New York, NY, USA, pp 34–42Google Scholar
  10. 10.
    Fort M, Sellarès JA, Valladares N (2010) Computing popular places using graphics processors. In: Proceedings of SSTDM’10 in cooperation with IEEE ICDM’10, IEEE Computer Society, pp 233–241Google Scholar
  11. 11.
    Fort M, Sellarès JA, Valladares N (2010) Computing popularity maps with graphics hardware. In: Proceedings of the 27th European workshop on computational geometry, pp 233–240Google Scholar
  12. 12.
    Gajentaan A, Overmars M (1995) On a class of \(O(n^2)\) problems in computational geometry. Comput Geom Theory Appl 5:165–185CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Giannotti F, Nanni M, Pedreschi D, Pinelli F (2007) Trajectory pattern mining. In: Proceedings of 13th ACM SIGKDD, Sant Jose, California, USA, pp 330–339Google Scholar
  14. 14.
    Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn. Prentice-Hall, Inc., Englewood Cliffs, NJGoogle Scholar
  15. 15.
    Gudmundsson J, van Kreveld M, Speckmann B (2004) Efficient detection of motion patterns in spatio-temporal data sets. In: Pfoser D, Cruz IF, Ronthaler M (eds) GIS. ACM, New York, pp 250–257Google Scholar
  16. 16.
    Gudmundsson J, van Kreveld MJ (2006) Computing longest duration flocks in trajectory data. In: de By RA, Nittel S (eds) GIS. ACM, New York, pp 35–42Google Scholar
  17. 17.
    Gudmundsson J, van Kreveld MJ, Speckmann B (2007) Efficient detection of patterns in 2D trajectories of moving points. GeoInformatica 11(2):195–215CrossRefGoogle Scholar
  18. 18.
    Laube P, Imfeld S, Weibel R (2005) Discovering relative motion patterns in groups of moving point objects. Int J Geogr Inf Sci 19(6):639–668CrossRefGoogle Scholar
  19. 19.
    Laube P, van Kreveld M, Imfield S (2004) Finding REMO—detecting relative motion patterns in geospatial lifelines. Developments in spatial data handling: 11th international symposium on spatial data handling, pp 201–215Google Scholar
  20. 20.
    Leite PJS, Teixeira JMXN, de Farias TSMC, Teichrieb V, Kelner J (2009) Massively parallel nearest neighbor queries for dynamic point clouds on the GPU. In: SBAC-PAD. IEEE Computer Society, pp 19–25Google Scholar
  21. 21.
    Li X, Han J, Lee JG, Gonzalez H (2007) Traffic density-based discovery of hot routes in road networks. In: SSTD 2007, LNCS, vol 4605, pp 441–459Google Scholar
  22. 22.
    Liao Z-H, Peng W-C (2012) Clustering spatial data with a geographic constraint: exploring local search. Knowl Inf Syst 31(1):153–170CrossRefGoogle Scholar
  23. 23.
    Lu E, Lee WC, Tseng V (2010) Mining fastest path from trajectories with multiple destinations in road networks. Knowl Inf Syst 1–29Google Scholar
  24. 24.
    NVIDIA (2011) CUDA programming guide 4.0. Technical report, NVIDIA CorporationGoogle Scholar
  25. 25.
    NVIDIA (2011) NVIDIA CUDA C programming best practices guide 4.0. Technical report, NVIDIA CorporationGoogle Scholar
  26. 26.
    Ong R, Wachowicz M, Nanni M, Renso C (2010) From pattern discovery to pattern interpretation in movement data. In: ICDM’10, pp 527–534Google Scholar
  27. 27.
    Owens JD, Luebke D, Govindaraju N, Harris M, Krger J, Lefohn AE, Purcell TJ (2007) A survey of general-purpose computation on graphics hardware. Comput Graph Forum 26(1):80–113CrossRefGoogle Scholar
  28. 28.
    Pelekis N, Kopanakis I, Kotsifakos EE, Frentzos E, Theodoridis Y (2011) Clustering uncertain trajectories. Knowl Inf Syst 28(1):117–147CrossRefGoogle Scholar
  29. 29.
    Rinzivillo S, Pedreschi D, Nanni M, Giannotti F, Andrienko NV, Andrienko GL (2008) Visually driven analysis of movement data by progressive clustering. Inf Vis 7(3–4):225–239CrossRefGoogle Scholar
  30. 30.
    Sacharidis D, Patroumpas Kl, Terrovitis M, Kantere V, Potamias M, Mouratidis K, Sellis T (2008) On-line discovery of hot motion paths. In: EDBT’08, March 2008, France, pp 392–402Google Scholar
  31. 31.
    Segal M, Akeley K (1994) The design of the openGL graphics interface. Technical report, Silicon Graphics Computer SystemsGoogle Scholar
  32. 32.
    Siddiqi K, Pizer S (2008) Medial representations: mathematics. Algorithms and applications. Springer, BerlinGoogle Scholar
  33. 33.
    Theodoridis Y (2011) R-Tree portal. Accessed Apr 2013
  34. 34.
    Tietbohl A, Bogorny V, Kuijpers B, Alvares LO (2008) A Clustering-based approach for discovering interesting places in trajectories, In: SAC’08. March 2008, BrazilGoogle Scholar
  35. 35.
    Trasarti R, Pinelli F, Nanni M, Giannotti F (2011) Mining mobility user profiles for car pooling. In: KDD’011, pp 1190–1198Google Scholar
  36. 36.
    Wilensky U (1999) NetLogo. Accessed Apr 2013

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Marta Fort
    • 1
  • J. Antoni Sellarès
    • 1
  • Nacho Valladares
    • 1
  1. 1.Informàtica i Matemàtica AplicadaUniversitat de GironaGironaSpain

Personalised recommendations