Skip to main content
Log in

Learning and clustering of fuzzy cognitive maps for travel behaviour analysis

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

In modern society, more and more attention is given to the increase in public transportation or bike use. In this regard, one of the most important issues is to find and analyse the factors influencing car dependency and the attitudes of people in terms of preferred transport mode. Although the individuals’ transport behavioural modelling is a complex task, it has a notable social and economic impact. Thus, in this paper, fuzzy cognitive maps are explored to represent the behaviour and operation of such complex systems. This soft-computing technique allows modelling how the travellers make decisions based on their knowledge of different transport modes properties at different levels of abstraction. These levels correspond to the hierarchy perception including different scenarios of travelling, different benefits of choosing a specific travel mode, and different situations and attributes related to those benefits. We use learning and clustering of fuzzy cognitive maps to describe travellers’ behaviour and change trends in different abstraction levels. Cluster estimations are done before and after the learning of the maps, in order to compare people’s way of thinking if only considering an initial view of a transport mode decision for a daily activity, and when they really have a deeper reasoning process in view of benefits and consequences. The results of this study will help transportation policy decision makers in better understanding of people’s needs and consequently will help them actualizing different policy formulations and implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aguilar J (2003) A dynamic fuzzy-cognitive-map approach based on random neural networks. Int J Comput Cognit pp 91–107. ISSN: 1542–5908

  2. Aguilar J (2005) A survey about fuzzy cognitive maps papers. Int J Comput Cognit 3

  3. Alizadeh S and Ghazanfari M (2007) Using data mining for learning and clustering FCM. Int J Comput Intell 4(2)

  4. Aronovich L and Spiegler I (2010) Bulk construction of dynamic clustered metric trees. Knowl Inf Syst 22:211–244. ISSN: 0219–1377

    Google Scholar 

  5. Axelrod R (1976) Structure of decision: the cognitive maps of political elites. Princeton University, Princeton

    Google Scholar 

  6. Balder D (2004) Fuzzy cognitive maps and their uses as knowledge mapping systems and decision support systems. Available: http://student.science.uva.nl/~dbalder/media/fcm.pdf

  7. Beena P, Ganguli R (2011) Structural damage detection using fuzzy cognitive maps and Hebbian learning. Appl Soft Comput 11:1014–1020

    Article  Google Scholar 

  8. Bolshakova N, Azuaje F (2002) Cluster validation techniques for genome expression data. Signal Process 83:825–833

    Article  Google Scholar 

  9. Bradley M (2006) Process data for understanding and modelling travel behavior. Travel survey methods: quality and future directions. Elsevier Science, pp 491–510

  10. Carlsson C, Fullér R (1996) Adaptive fuzzy cognitive maps for hyperknowledge representation in strategy formation process. In: Proceedings of international panel conference on soft and intelligent computing. Technical University of Budapest

  11. Carvalho JP, Carola M, Tomé JAB (2006) Forest fire modelling using rule-based fuzzy cognitive maps and voronoi based cellular automata NAFIPS 2006 annual meeting of the north american fuzzy information processing society pp 217–222. ISBN: 1424403626

  12. Contreras J (2005) Aplicación de Mapas Cognitivos Difusos Dinámicos a tareas de supervisión y control. Trabajo Final de Grado, Universidad de los Andes. Mérida, Venezuela

  13. Czarnowski I (2011) Cluster-based instance selection for machine classification. Knowl Inf Syst Springer 30:113–133. ISSN: 02191377

    Google Scholar 

  14. Chen T-Y (2012) A signed-distance-based approach to importance assessment and multi-criteria group decision analysis based on interval type-2 fuzzy set. Knowl Inf Syst pp 1–39. doi:10.1007/s10115-012-0497-6. ISSN: 0219–1377

  15. Chorus C (2009) An empirical study into the influence of travel behavior on stated and revealed mental maps. In: 88th annual meeting of the transportation research board

  16. David R and Alla H (eds) (2010) Discrete, continuous, and hybrid petri nets. Springer. ISBN:364206129X

  17. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 1(2):224–227

    Article  Google Scholar 

  18. Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30. ISSN: 1532–4435

    Google Scholar 

  19. Dijst M (1997) Spatial policy and passenger transportation. J Hous Built Environ 12:91–111

    Article  Google Scholar 

  20. Domeniconi C, Peng J, Yan B (2011) Composite kernels for semi-supervised clustering. Knowl Inf Syst Springer, London 28:99–116. ISSN: 0219–1377

    Google Scholar 

  21. Eden C (1988) Cognitive mapping: a review. Eur J Oper Res 36:1–13

    Article  Google Scholar 

  22. Eden C (1992) On the nature of cognitive maps. J Manag Stud 29:261–265

    Article  Google Scholar 

  23. Eden C (2004) Analyzing cognitive maps to help structure issues or problems. Eur J Oper Res Elsevier 159(3):673–686

    Article  MATH  Google Scholar 

  24. Grant D (2005) Using fuzzy cognitive maps to assess MIS organizational change impact. In: 38th Hawaii international conference on system sciences

  25. Groumpos PP, Christova N, Stylios C (2003) Implementation of fuzzy cognitive maps for production planning of plant control systems. MED, Rhodes, Greece

  26. Gutiérrez J (2006) Análisis de los efectos de las infraestructuras de transporte sobre la accesibilidad y la cohesión regional. Estudios de Construcción y Transportes. Ministerio de Fomento, España

  27. Huerga AV (2002) A balanced differential learning algorithm in fuzzy cognitive maps. In: 16th international workshop on qualitative reasoning

  28. Janssens D, Hannes E, Wets G (2008) Tracking down the effects of travel demand policies. IMOB. Hasselt University, Diepenbeek

    Google Scholar 

  29. Kandasamy WBV, Smarandache F, Ilanthenral K (2007) Elementary fuzzy matrix theory and fuzzy models for social scientists, automaton. ISBN 1-59973-005-7

  30. Kardaras D, Mentzas G (1997) Using fuzzy cognitive maps to model and analyse business performance assessment. Adv Ind Eng Appl Pract II:63–68

    Google Scholar 

  31. Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE Int Conf Neural Netw 4:1942–1948

    Google Scholar 

  32. Kianmehr K, Alshalalfa M, Alhajj R (2010) Fuzzy clustering-based discretization for gene expression classification. Knowl Inf Syst, Springer, London. 24:441–465. ISSN: 0219–1377

  33. Kosko B (1986) Fuzzy cognitive maps. Int J Man-Mach Stud 24:65–75

    Article  MATH  Google Scholar 

  34. Kosko B (1993) Fuzzy thinking. Hyperion

  35. Koulouriotis D, Diakoulakis IE, Emiris DM, Antonidakis EN, Kaliakatsos IA (2003a) Efficiently modeling and controlling complex dynamic systems using evolutionary fuzzy cognitive maps. Int J Comput Cognit pp 41–65

  36. Koulouriotis D, Diakoulakis IE, Emiris DM, Antonidakis EN, Kaliakatsos IA (2003b) Efficiently modeling and controlling complex dynamic systems using evolutionary fuzzy cognitive maps. ABC Comput Pragmat 1:41–65

    Google Scholar 

  37. Langfield-Smith K, Wirth A (1992) Measuring differences between cognitive maps. J Oper Res Soc 42(12):1135–1150

    Google Scholar 

  38. Laureano-Cruces AL, Ram Rez-Rodr Guez J, Tern-Gilmore A (2004) Evaluation of the teaching-learning process with fuzzy cognitive maps. Available: http://springerlink.metapress.com/openurl.asp?genre$=$article&issn$=$0302-9743&volume$=$3315&spage$=$922

  39. León M, Bello R, Vanhoof K (2009a) Cognitive maps in transport behavior. In: Proceedings of the 2009 eighth mexican international conference on artificial intelligence. IEEE Computer Society, pp 179–184

  40. León M, Bello R, Vanhoof K (2009b) Considering artificial intelligence techniques to perform adaptable knowledge structures. World scientific proceedings series on computer engineering and information science vol 2 intelligent decision making systems pp 88–93

  41. León M, Nápoles G, García M, Bello R, Vanhoof K (2010a) Cognitive mapping and knowledge engineering in travel behavior sciences. CEDI Congreso Español de Informática (SICO Simposio de Inteligencia Computacional). Capítulo Español de la IEEE Computational Intelligence Society

  42. León M, Nápoles G, García M, Bello R, Vanhoof K (2010b) A revision and experience using cognitive mapping and knowledge engineering in travel behavior sciences. “POLIBITS” Res J Comput Sci Comput Eng Appl. ISSN: 1870–9044

  43. León M, Nápoles G, García MM, Bello R, Vanhoof K (2011a) Mapas cognitivos difusos aplicados a un problema de comportamiento de Viajes. III taller internacional de descubrimiento de conocimiento, gestión del conocimiento y toma de decisiones. Eureka Iberoamérica Universidad de Cantabria, Santander, España

  44. León M, Nápoles G, Rodriguez C, García MM, Bello R, Vanhoof K (2011b) A fuzzy cognitive maps modeling, learning and simulation framework for studying complex system. New challenges on bioinspired applications, Part II Lecture Notes in Artificial Intelligence, vol. 7095. Springer, Berlin Heidelberg, pp 7243–7256

  45. León M, Rodriguez C, Nápoles G, García MM, Bello R, Vanhoof K (2011c) Individual travel behavior modeling through fuzzy cognitive maps. Informática 14th international convention and fair. Ministerio de Informática y Comunicaciones, Cuba

  46. Markíczy L, Goldberg J (1995) A method for eliciting and comparing causal maps. J Manag 21(2):305–333

    Google Scholar 

  47. Mateou NH, Moiseos M, Andreou AS (2005) Multi-objective evolutionary fuzzy cognitive maps for decision support. IEEE Computer Society pp 824–830

  48. Mrówka E, Grzegorzewski P (2005) Friedman’s test with missing observations. In: EUSFLAT 4th conference of the european society for fuzzy logic and technology, pp 621–626. ISBN: 84-7653-872-3

  49. Ortolani L, Mcroberts N, Dendoncker N, Rounsevell M (2010) Analysis of farmers’ concepts of environmental management measures: an application of cognitive maps and cluster analysis in pursuit of modelling agents’ behaviour, vol. 247. Springer, Berlin/Heidelberg, pp 363–381. ISBN: 978-3-642-03219-6

  50. Papageorgiou EI, Groumpos PP (2005) A weight adaptation method for fuzzy cognitive map learning. Springer, Berlin

    Google Scholar 

  51. Parenthöen M, Buche C, Tisseau J (2002) Action learning for autonomous virtual actors. ISRA, Toluca

    Google Scholar 

  52. Parsopoulos KE, Papageorgiou EI, Groumpos PP, Vrahatis MN (2003) A first study of fuzzy cognitive maps learning using particle swarm optimization. IEEE Congress on Evolutionary Computation. IEEE Press

  53. Peláez CE, Bowles JB (1996) Using fuzzy cognitive mpas as a system model for failure modes effects analysis. Information sciences. Elsevier Science Inc

  54. Peña A, Sossa H (2005) Negotiated learning by fuzzy cognitive maps. IASTED International Conference, Grindelwald, Switzerland

  55. Peña A, Sossa H, Gutierrez F (2007) Ontology agent based rule base fuzzy cognitive maps KES-AMSTA. Springer, Berlin, pp 328–337

    Google Scholar 

  56. Razali NM, Wah YB (2011) Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J Stat Model Anal 2(1): 21–33. ISBN 978-967-363-157-5

    Google Scholar 

  57. Rodriguez-Repiso L, Setchi R, Salmeron JL (2006) Modelling IT projects success with fuzzy cognitive maps. Expert Systems with Applications. Elsevier Ltd

  58. Rosner B, Glynn RJ, Lee M-LT (2003) Incorporation of clustering effects for the Wilcoxon rank sum test: a large-sample approach. Biometrics 59:1089–1098

    Article  MATH  MathSciNet  Google Scholar 

  59. Sadiq R, Kleiner Y, Rajani B (2006) Estimating risk of contaminant intrusion in distribution networks using fuzzy rule-based modeling. NATO advanced research workshop on computational models of risks to infrastructure. Primosten, Croatis, pp 318–327

  60. Sadiq R, Kleiner Y, Rajani BB (2004) Fuzzy cognitive maps for decision support to maintain water quality in ageing water mains. In: 4th international conference on decision-making in urban and civil engineering. Porto, Portugal, pp 1–10

  61. Saha S, Bandyopadhyay S (2010) A new multiobjective clustering technique based on the concepts of stability and symmetry. Knowl Inf Syst Springer, London 23:1–27. ISSN: 0219–1377

    Google Scholar 

  62. Schneidera M, Shnaiderb E, Kandel A, Chew G (1998) Automatic construction of FCMs. Fuzzy Sets Syst 93:161–172. ISSN: 01650114

    Google Scholar 

  63. Shi Y (2010) Multiple criteria optimization-based data mining methods and applications: a systematic survey. Knowl Inf Syst Springer 24:369–391

    Article  Google Scholar 

  64. Siraj A, Bridges SM, Vaughn RB (2001) Fuzzy cognitive maps for decision support in an intelligent intrusion detection system. In: Joint 9th international fuzzy systems association world congress and the 20th north american fuzzy information processing society international conference on fuzziness and soft computing in the new millennium. Vancouver, Canada

  65. Stephen TM (1997) Software design for a fuzzy cognitive map modeling tool. Master’s project. Rensselaer Polytechnic Institute, New York

    Google Scholar 

  66. Stylios CD, Georgopoulos VC, Groumpos PP (1997) The use of fuzzy cognitive maps in modeling systems. In: 5th IEEE mediterranean conference on control and systems. Paphos

  67. Stylios CD, Groumpos PP (1999) Mathematical formulation of fuzzy cognitive maps. In: 7th mediterranean conference on control and automation. Haifa, Israel

  68. Tsadiras AK (2007) Using fuzzy cognitive maps for E-commerce strategic planning

  69. Tsadiras AK (2008) Inference using binary, trivalent and sigmoid fuzzy cognitive maps, information sciences, pp 3880–3894

  70. Vidal J, Lama M, Bugarín A (2011) Toward the use of Petri nets for the formalization of OWL-S choreographies. Knowl Inf Syst pp 1–37. ISSN: 0219–1377. doi:10.1007/s10115-011-0451-z

  71. Wang T, Yang J (2010) A heuristic method for learning Bayesian networks using discrete particle swarm optimization. Knowl Inf Syst 24(2):269–281. ISSN: 0219–1377

    Google Scholar 

  72. Wei Z, Lu L, Yanchun Z (2008) Using fuzzy cognitive time maps for modeling and evaluating trust dynamics in the virtual enterprises. Expert Systems with Applications. Elsevier Ltd. pp 1583–1592

  73. Xi R, Lin N, Chen Y, Kim Y (2011) Compression and aggregation of Bayesian estimates for data intensive computing. Knowl Inf Syst pp 1–22. ISSN: 0219–1377. doi:10.1007/s10115-011-0459-4

  74. Xiao Z, Chen W, Li L (2012) A method based on interval-valued fuzzy soft set for multi-attribute group decision-making problems under uncertain environment. Knowl Inf Syst, pp 1–17. ISSN: 0219–1377. doi:10.1007/s10115-012-0496-7

  75. Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw IEEE Comput Intell Soc 16(3): 645–678. ISSN: 1045–9227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maikel León.

Additional information

Prof. Da Ruan deceased on June 31, 2011 (while being involved in this study).

Rights and permissions

Reprints and permissions

About this article

Cite this article

León, M., Mkrtchyan, L., Depaire, B. et al. Learning and clustering of fuzzy cognitive maps for travel behaviour analysis. Knowl Inf Syst 39, 435–462 (2014). https://doi.org/10.1007/s10115-013-0616-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-013-0616-z

Keywords

Navigation