Advertisement

Knowledge and Information Systems

, Volume 28, Issue 2, pp 283–310 | Cite as

CAS-Mine: providing personalized services in context-aware applications by means of generalized rules

  • Elena Baralis
  • Luca Cagliero
  • Tania Cerquitelli
  • Paolo GarzaEmail author
  • Marco Marchetti
Regular Paper

Abstract

Context-aware systems acquire and exploit information on the user context to tailor services to a particular user, place, time, and/or event. Hence, they allow service providers to adapt their services to actual user needs, by offering personalized services depending on the current user context. Service providers are usually interested in profiling users both to increase client satisfaction and to broaden the set of offered services. Novel and efficient techniques are needed to tailor service supply to the user (or the user category) and to the situation in which he/she is involved. This paper presents the CAS-Mine framework to efficiently discover relevant relationships between user context data and currently asked services for both user and service profiling. CAS-Mine efficiently extracts generalized association rules, which provide a high-level abstraction of both user habits and service characteristics depending on the context. A lazy (analyst-provided) taxonomy evaluation performed on different attributes (e.g., a geographic hierarchy on spatial coordinates, a classification of provided services) drives the rule generalization process. Extracted rules are classified into groups according to their semantic meaning and ranked by means of quality indices, thus allowing a domain expert to focus on the most relevant patterns. Experiments performed on three context-aware datasets, obtained by logging user requests and context information for three real applications, show the effectiveness and the efficiency of the CAS-Mine framework in mining different valuable types of correlations between user habits, context information, and provided services.

Keywords

Generalized association rules Context-aware applications User and service profiling Itemset mining Rule classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal R, Imielinski T, Swami AN (1993) Mining association rules between sets of items in large databases. In: Buneman P, Jajodia S (eds) SIGMOD conference. ACM Press, New york, pp 207–216Google Scholar
  2. 2.
    Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: Bocca JB, Jarke M, Zaniolo C (eds) VLDB. Morgan Kaufmann, Los Altos, pp 487–499Google Scholar
  3. 3.
    Antonie M-L, Zaïane OR, Coman A (2001) Application of data mining techniques for medical image classification. In: Zaïane OR, Simoff SJ (eds) MDM/KDD. University of Alberta, Edmonton, pp 94–101Google Scholar
  4. 4.
    Baralis E, Cagliero L, Cerquitelli T, D’Elia V, Garza P (2010) Support driven opportunistic aggregation for generalized itemset extraction. In: IEEE conference of intelligent systems. IEEE, pp 102–107Google Scholar
  5. 5.
    Baralis E, Cagliero L, Cerquitelli T, Garza P, Marchetti M (2009) Context-aware user and service profiling by means of generalized association rules. In: Velásquez JD, Ríos SA, Howlett RJ, Jain LC (eds) KES (2), vol 5712 of Lecture Notes in Computer Science. Springer, Berlin, pp 50–57Google Scholar
  6. 6.
    Bolchini C, Curino C, Quintarelli E, Schreiber FA, Tanca L (2007) A data-oriented survey of context models. SIGMOD rec 36(4): 19–26CrossRefGoogle Scholar
  7. 7.
    Bradley NA, Dunlop MD (2005) Toward a multidisciplinary model of context to support context-aware computing. Hum Comput Interact 20(4): 403–446CrossRefGoogle Scholar
  8. 8.
    Byun H, Cheverst K (2004) Utilizing context history to provide dynamic adaptations. Appl Artifici Intell 18(6): 533–548CrossRefGoogle Scholar
  9. 9.
    Cong G, Tung AKH, Xu X, Pan F, Yang J (2004) Farmer: finding interesting rule groups in microarray datasets. In: Weikum G, König AC, Deßloch S (eds) SIGMOD conference. ACM, pp 143–154Google Scholar
  10. 10.
    Daoud M, Tamine-Lechani L, Boughanem M (2009) Towards a graph-based user profile modeling for a session-based personalized search. Knowl Inf Syst 21(3): 365–398CrossRefGoogle Scholar
  11. 11.
    Häkkilä J, Mäntyjärvi J (2005) Collaboration in context-aware mobile phone applications. HICSS, IEEE Computer Society, p 33aGoogle Scholar
  12. 12.
    Han J, Fu Y (1995) Discovery of multiple-level association rules from large databases. In: Dayal U, Gray PMD, Nishio S (eds) VLDB. Morgan Kaufmann, Los Altos, pp 420–431Google Scholar
  13. 13.
    Han J, Fu Y (1999) Mining multiple-level association rules in large databases. IEEE Trans Knowl Data Eng 11(5): 798–804CrossRefGoogle Scholar
  14. 14.
    Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: Chen W, Naughton JF, Bernstein PA (eds) SIGMOD conference. ACM, New york, pp 1–12CrossRefGoogle Scholar
  15. 15.
    Heuer A, Lubinski A (1998) Data reduction—an adaptation technique for mobile environments. Interactive Applications of mobile Computing (IMC’98), pp 1–2Google Scholar
  16. 16.
    Hipp J, Myka A, Wirth R, Güntzer U (1998) A new algorithm for faster mining of generalized association rules. In: Zytkow JM, Quafafou M (eds) PKDD, vol 1510 of Lecture Notes in Computer Science. Springer, Berlin , pp 74–82Google Scholar
  17. 17.
    Hong J, Suh E, Kim S-J (2009) Context-aware systems: a literature review and classification. Expert Syst Appl 36(4): 8509–8522CrossRefGoogle Scholar
  18. 18.
    Jameson A (2001) Modelling both the context and the user. Pers Ubiquitous Comput 5(1): 29–33CrossRefGoogle Scholar
  19. 19.
    Jiang T, Tuzhilin A (2009) Improving personalization solutions through optimal segmentation of customer bases. IEEE Trans Knowl Data Eng 21(3): 305–320CrossRefGoogle Scholar
  20. 20.
    Lee B-H, Kim H-N, Jung J-G, Jo G (2006) Location-based service with context data for a restaurant recommendation. In: Bressan S, Kü  ng J, Wagner R (eds) DEXA, vol 4080 of Lecture Notes in Computer Science. Springer, pp 430–438Google Scholar
  21. 21.
    Leung KW-T, Lee DL (2010) Deriving concept-based user profiles from search engine logs. IEEE Trans Knowl Data Eng 22(7): 969–982CrossRefGoogle Scholar
  22. 22.
    Liu B, Hsu W, Mun L-F, Lee H-Y (1999) Finding interesting patterns using user expectations. IEEE Trans Knowl Data Eng 11(6): 817–832CrossRefGoogle Scholar
  23. 23.
    Nurmi P, Salden AH, Lau SL, Suomela J, Sutterer M, Millerat J, Martin M, Lagerspetz E, Poortinga R (2006) A system for context-dependent user modeling. In: Meersman R, Tari Z, Herrero P (eds) OTM workshops (2) vol 4278 of Lecture Notes in Computer Science. Springer, pp 1894–1903Google Scholar
  24. 24.
    Oliver N, Garg A, Horvitz E (2004) Layered representations for learning and inferring office activity from multiple sensory channels. Comput Vis Image Underst 96(2): 163–180CrossRefGoogle Scholar
  25. 25.
    Pramudiono I, Kitsuregawa M (2004) Fp-tax: tree structure based generalized association rule mining. In: Das G, Liu B, Yu PS (eds) DMKD. ACM, New york, pp 60–63CrossRefGoogle Scholar
  26. 26.
    Python (2009) Python website. http://www.python.org
  27. 27.
    Shen B, Yao M, Wu Z, Gao Y (2010) Mining dynamic association rules with comments. Knowl Inf Syst 23(1): 73–98CrossRefGoogle Scholar
  28. 28.
    Singh S, Vajirkar P, Lee Y (2003) Context-based data mining using ontologies. In: Song I-Y, Liddle SW, Ling TW, Scheuermann P (eds) ER, vol 2813 of Lecture Notes in Computer Science. Springer, pp 405–418Google Scholar
  29. 29.
    Srikant R, Agrawal R (1995) Mining generalized association rules. In: Dayal U, Gray PMD, Nishio S (eds) VLDB. Morgan Kaufmann, Los Altos, pp 407–419Google Scholar
  30. 30.
    Srikant R, Agrawal R (1996) Mining quantitative association rules in large relational tables. In: Jagadish HV, Mumick IS (eds) SIGMOD conference. ACM Press, pp 1–12Google Scholar
  31. 31.
    Srikant R, Vu Q, Agrawal R (1997) Mining association rules with item constraints. In: Heckerman D, Mannila H, Pregibon D (eds) KDD. AAAI Press, Menlo Park, USA, pp 67–73Google Scholar
  32. 32.
    Sriphaew K, Theeramunkong T (2002) A new method for finding generalized frequent itemsets in generalized association rule mining. ISCC, IEEE Computer Society, pp 1040–1045Google Scholar
  33. 33.
    Tamine-Lechani L, Boughanem M, Daoud M (2010) Evaluation of contextual information retrieval effectiveness: overview of issues and research. Knowl Inf Syst 24(1): 1–34CrossRefGoogle Scholar
  34. 34.
    Tan P-N, Kumar V, Srivastava J (2002) Selecting the right interestingness measure for association patterns. In: Zaïane D, Goebel R (eds) KDD. ACM, New york, pp 32–41Google Scholar
  35. 35.
    Tapia EM, Intille SS, Larson K (2004) Activity recognition in the home using simple and ubiquitous sensors. In: Ferscha A, Mattern F (eds) Pervasive, vol 3001 of Lecture Notes in Computer Science. Springer, pp 158–175Google Scholar
  36. 36.
    TPC-H (2009) The TPC benchmark H. Transaction Processing Performance Council. http://www.tpc.org/tpch/default.asp
  37. 37.
    Tseng S-M, Tsui C-F (2004) Mining multilevel and location-aware service patterns in mobile web environments. IEEE Trans Syst Man Cybern Part B 34(6): 2480–2485CrossRefGoogle Scholar
  38. 38.
    Vajirkar P, Singh S, Lee Y (2003) Context-aware data mining framework for wireless medical application. In: Marík V, Retschitzegger W, Stepánková O (eds) DEXA, vol 2736 of Lecture Notes in Computer Science. Springer, pp 381–391Google Scholar
  39. 39.
    Woon WL, Madnick SE (2009) Asymmetric information distances for automated taxonomy construction. Knowl Inf Syst 21(1): 91–111CrossRefGoogle Scholar
  40. 40.
    Yang M, Wu Y, Hua G (2009) Context-aware visual tracking. IEEE Trans Pattern Anal Mach Intell 31(7): 1195–1209CrossRefGoogle Scholar
  41. 41.
    Zaki MJ, Parthasarathy S, Ogihara M, Li W (1997) New algorithms for fast discovery of association rules. In: Heckerman D, Mannila H, Pregibon D (eds) KDD. AAAI Press, Menlo Park, USA, pp 283–286Google Scholar
  42. 42.
    Zukerman I, Albrecht DW (2001) Predictive statistical models for user modeling. User Model User-adapt Interact 11(1–2): 5–18zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Elena Baralis
    • 1
  • Luca Cagliero
    • 1
  • Tania Cerquitelli
    • 1
  • Paolo Garza
    • 2
    Email author
  • Marco Marchetti
    • 3
  1. 1.Dipartimento di Automatica e InformaticaPolitecnico di TorinoTorinoItaly
  2. 2.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly
  3. 3.Telecom Italia LabTorinoItaly

Personalised recommendations