Knowledge and Information Systems

, Volume 28, Issue 2, pp 449–472 | Cite as

An AHP-based approach toward enterprise architecture analysis based on enterprise architecture quality attributes

  • Mahsa RazaviEmail author
  • Fereidoon Shams Aliee
  • Kambiz Badie
Regular Paper


Enterprise Architecture (EA) as a discipline that manages large amount of models and information about different aspects of the enterprise, can support decision making on enterprise-wide issues. In order to provide such support, EA information should be amenable to analysis of various utilities and quality attributes. In this regard, we have proposed the idea of characterizing and using enterprise architecture quality attributes. And this paper provides a quantitative AHP-based method toward expert-based EA analysis. Our method proposes a step-by-step process of assessing quality attribute achievement of different scenarios using AHP. By this method, most suitable EA scenarios are selected according to prioritized enterprise utilities and this selection has an important affect on decision making in enterprises. The proposed method also introduces a data structure that contains required information about quality attribute achievement of different EA scenarios in enterprises. The stored asset can be used for further decision making and progress assessment in future. Sensitivity analysis is also part of the process to identify sensitive points in the decision process. The applicability of the proposed method is demonstrated using a practical case study.


Enterprise Architecture Decision making Quality attribute Analytical Hierarchy Process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Naeem T, Gorton I, Babar M et al (2005) A quality-driven systematic approach for architecting distributed software applications. In: Proceedings of the 27th international conference on software engineering (ICSE). St. Louis, USA, pp 244–253Google Scholar
  2. 2.
    Armour F, Kaisler S, Liu S (1999) Building an enterprise architecture step by step. IEEE IT Professional 1(4): 31–39CrossRefGoogle Scholar
  3. 3.
    Boer F, Bonsangue M, Jacob J et al (2005) Enterprise architecture analysis with XML. In: Proceedings of the 38th annual Hawaii international conference on system sciences (HICSS 2005). vol 8. IEEE Computer Society Press, USA, pp 222bGoogle Scholar
  4. 4.
    Buckl S, Matthes F, Schweda C (2009) Classifying enterprise architecture analysis approaches. In: Proceedings of the 2nd IFIP WG5. 8 Workshop on enterprise interoperability (IWEI’2009). Valencia, Spain, pp 66–79Google Scholar
  5. 5.
    Buyukozkan G, Ruan D (2008) Evaluation of software development projects using a fuzzy multi-criteria decision approach. Math Comput Simul 77(5–6): 464–475MathSciNetCrossRefGoogle Scholar
  6. 6.
    Buyukyazici M, Sucu M (2003) The analytic hierarchy and analytic network processes. Hacettepe J Math Stat 32: 65–73MathSciNetGoogle Scholar
  7. 7.
    Davidsson P, Johansson S, Svahnberg M (2005) Using the analytic hierarchy process for evaluating multi-agent system architecture candidates. In: Proceedings of the 6th international workshop on agent-oriented software engineering (AOSE), LNCS 3950. Springer Verlag, Berlin, Germany, pp 205–217Google Scholar
  8. 8.
    Deng H (1999) Multicriteria analysis with fuzzy pairwise comparisons. Int J Approx Reason 21: 215–231CrossRefGoogle Scholar
  9. 9.
    Federal Chief Information Officer (CIO) Council (1999) Federal enterprise architecture framework (FEAF). Version 1.1, Available at Last retrieved 21 May 2010
  10. 10.
    Forman E, Gass S (2001) The analytic hierarchy process—an exposition. Oper Res 49(4): 469–486MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Frank U, Heise D, Kattenstroth H et al. (2008) Designing and utilizing business indicator systems within enterprise models-outline of a method. In: Proceedings of modeling business information systems conference (MobIS 2008). Saarbrucken, Germany, pp 89–105Google Scholar
  12. 12.
    Harker P, Vargas L (1987) The theory of ratio scale estimation. Manag Sci 33(11): 1383–1403MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hilliard R (2000) Impact assessment of IEEE 1471 on the open group architecture framework, Retrieved from
  14. 14.
    Jacob M, Jonkers H (2006) Quantitative analysis of enterprise architectures. In: Konstantas D, Bourrieres J, Leonard M, Boudjlida N (eds) Interoperability of enterprise software and applications. Springer, Geneva, pp 239–252Google Scholar
  15. 15.
    Johnson P, Johansson E, Sommestad T et al. (2007a) A tool for enterprise architecture analysis. In: Proceedings of the 11 th IEEE enterprise distributed object computing conference. IEEE Computer Society, USA, pp 142–156Google Scholar
  16. 16.
    Johnson P, Lagerström R, Närman P et al (2007b) Enterprise architecture analysis with extended influence diagrams. Info Syst Front 9(2-3): 163–180CrossRefGoogle Scholar
  17. 17.
    Johnson P, Lagerström R, Närman P et al (2007) Extended influence diagrams for system quality analysis. J Softw (JSW) 2(3): 30–42Google Scholar
  18. 18.
    Johnson P, Lagerström R, Närman P et al (2006a) Extended influence diagrams for enterprise architecture analysis. In: Proceedings of the 10th IEEE enterprise distributed object computing Conference, IEEE computer society, pp 3–12Google Scholar
  19. 19.
    Johnson P, Nordstrom L, Lagerstrom R et al (2006b) Formalizing analysis of enterprise architecture. In: Doumeingts G, Muller J, Morel G (eds) Enterprise Interoperability—new challenges and approaches. Springer, London, pp 35–44Google Scholar
  20. 20.
    Kahraman C, Buyukozkan G, Ruan D (2004) Measuring software development value using fuzzy logic. In: Ruan D, Zeng X (eds) Intelligent sensory evaluation-methodologies and applications. Springer, pp 285–308Google Scholar
  21. 21.
    Karlsson J, Wohlin C, Regnell B (1998) An evaluation of methods for prioritizing software requirements. Info Softw Technol 39(14-15): 938–947Google Scholar
  22. 22.
    Lagerström R (2007) Analyzing system maintainability using enterprise architecture models. In: Proceedings of the 2nd workshop on trends in enterprise architecture research (TEAR’07). St Gallen, Switzerland, pp 31–39Google Scholar
  23. 23.
    Lagerström R, Johnson P (2008) Using architectural models to predict the maintainability of enterprise systems. In: Proceedings of the 12th European conference on software maintenance and reengineering, pp 248–252Google Scholar
  24. 24.
    Lee K, Choi H, Lee D et al (2006) Quantitative measurement of quality attribute preferences using conjoint analysis. Lect Notes Comput Sci 3941: 213–224CrossRefGoogle Scholar
  25. 25.
    Løken E (2007) Use of multi criteria decision analysis methods for energy planning problems. Renew Sustain Energy Rev 11: 1584–1595CrossRefGoogle Scholar
  26. 26.
    Macdonald C, Ounis I (2008) Voting techniques for expert search. Knowl Inf Syst 16(3): 259–280CrossRefGoogle Scholar
  27. 27.
    Mikhailov L, Tsvetinov P (2004) Evaluation of services using a fuzzy analytic hierarchy process. Appl Soft Comput 5: 23–33CrossRefGoogle Scholar
  28. 28.
    Närman P, Johnson P, Nordström L (2007) Enterprise architecture: a framework supporting system quality analysis. In: Proceedings of the 11th IEEE enterprise distributed object computing conference, IEEE Computer Society, pp 130–141Google Scholar
  29. 29.
    Niemann, K (eds) (2006) From Enterprise architecture to IT governance- elements of effective IT management. Vieweg+Teubner, WiesbadenGoogle Scholar
  30. 30.
    Nightingale D, Rhodes D (2004) Enterprise systems architecting: emerging art and science within engineering systems. In: Proceedings of MIT engineering systems symposiumGoogle Scholar
  31. 31.
    Pomerol, J, Barba-Romero, S (eds) (2000) Multi-criterion decisions in management: principles and practice. Kluwer, MassachusettsGoogle Scholar
  32. 32.
    Ramanathan R (2002) Successful transfer of environmentally sound technologies for greenhouse gas mitigation: a framework for matching the needs of developing countries. Ecol Econ 42(1): 117–129CrossRefGoogle Scholar
  33. 33.
    Razavi Davoudi M, Shams Aliee F (2009) Characterization of enterprise architecture quality attributes. In: Proceedings of the EDOC 2009 conference workshop on advances in quality of service management workshop (AquSerM09). IEEE Computer Society Press, Auckland, pp 131–137Google Scholar
  34. 34.
    Rebovich G (2005) Enterprise systems engineering theory and practice, vol 2: systems thinking for the enterprise: new and emerging perspectives, The MITRE Corporation, MP05B0000043Google Scholar
  35. 35.
    Reddy A, Naidu M, Govindarajulu P (2007) An integrated approach of analytical hierarchy process model and goal model (AHP-GP Model) for selection of software architecture. Int J Comput Sci Network Secur 7(10): 108–117Google Scholar
  36. 36.
    Saaty, T (eds) (1980) The analytic hierarchy process. McGraw Hill Inc, New York, NYzbMATHGoogle Scholar
  37. 37.
    Saaty, T (eds) (1994) Fundamentals of decision making. RWS Publications, Pittsburgh, PAGoogle Scholar
  38. 38.
    Saaty, T, Vargas, L (eds) (2001) Models, methods, concepts & applications of the analytic hierarchy process. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  39. 39.
    Seyed Danesh A, Ahmad R (2009) Study of prioritization techniques using students as subjects. In: Proceedings of the international conference on information management and engineering (ICIME), pp 390–394Google Scholar
  40. 40.
    Spewak, S (eds) (1992) Enterprise architecture planning, developing a blueprint for data, applications and technology. Wiley , New YorkGoogle Scholar
  41. 41.
    Štrumbelj E, Bosnić Z, Kononenko I, Zakotnik B, Grašič Kuhar C (2009) Explanation and reliability of prediction models: the case of breast cancer recurrence, knowledge and information systems. [Online]. doi: 10.1007/s10115-009-0244-9
  42. 42.
    Svahnberg M, Wohlin C, Lundberg L, Mattsson M (2003) A quality-driven decision-support method for identifying software architecture candidates. Int J Softw Eng Knowl Eng 13(5): 547–573CrossRefGoogle Scholar
  43. 43.
    Svahnberg M, Wohlin C, Lundberg L, Mattsson M (2002) A method for understanding quality attributes in software architecture structures. In: Proceedings of the 14th international conference on Software engineering and knowledge engineering (SEKE), pp 819–826Google Scholar
  44. 44.
    Swarz R, DeRosa J, (2006) A Framework for enterprise systems engineering processes. Tech Report MITRE CorporationGoogle Scholar
  45. 45.
    Triantaphyllou E, Kovalerchuk B, Mann L et al (1997) Determining the most important criteria in maintenance decision making. J Qual Maint Eng 3(1): 16–28CrossRefGoogle Scholar
  46. 46.
    Vaidya O, Kumar S (2006) Analytic hierarchy process: an overview of applications. Eur J Oper Res 169: 1–29MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Wei G, (2009) Extension of TOPSIS method for 2-tuple linguistic multiple attribute group decision making with incomplete weight information, knowledge and information systems. doi: 10.1007/s10115-009-0258-3
  48. 48.
    Yu E, Strohmaier M, Deng X, (2006) Exploring intentional modeling and analysis for enterprise architecture. In: Proceedings of the EDOC 2006 conference workshop on trends in enterprise architecture research (TEAR 2006). IEEE Computer Society Press, Hong Kong, pp 32Google Scholar
  49. 49.
    Zhu L, Aurum A, Gorton I et al (2005) Tradeoff and sensitivity analysis in software architecture evaluation using analytic hierarchy process. Softw Qual J 13(4): 357–375CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Mahsa Razavi
    • 1
    Email author
  • Fereidoon Shams Aliee
    • 2
  • Kambiz Badie
    • 3
  1. 1.Islamic Azad University Science and Research BranchTehranIran
  2. 2.Shahid Beheshti UniversityTehranIran
  3. 3.Iran Telecommunication Research CenterTehranIran

Personalised recommendations