Skip to main content
Log in

Inductive database languages: requirements and examples

  • Survey Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Inductive databases (IDBs) represent a database perspective on Knowledge discovery in databases (KDD). In an IDB, the KDD application can express both queries capable of accessing and manipulating data, and queries capable of generating, manipulating, and applying patterns allowing to formalize the notion of mining process. The feature that makes them different from other data mining applications is exactly the idea of looking at the support for knowledge discovery as an extension of the query process. This paper draws a list of desirable properties to be taken into account in the definition of an IDB framework. They involve several dimensions, such as the expressiveness of the language in representing data and models, the closure principle, the capability to provide a support for an efficient algorithm programming. These requirements are a basis for a comparative study that highlights strengths and weaknesses of existing IDB approaches. The paper focuses on the SQL-based ATLaS language/system, on the logic-based \({\mathcal{LDL}++}\) language/system, and on the XML-based KDDML language/system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal R, Methta M, Shafer J, Srikant R (1994) Fast Algorithms for Mining Association Rules in Large Databases. In Jorge B, Bocca JB, Jarke M, Zaniolo C (eds) Proceeding of the 20th International Conference on very large databases (VLDB), Santiago de Chile, Chile, 12–15 September, pp 478–499

  2. Arni N, Ong K, Zaniolo C (1993) Negation and Aggregates in Recursive Rules: the \({\mathcal{LDL}++}\) Approach. In Ceri S, Tanaka K, Tsur S (eds) Proceeding of the Third International Conference on deductive and object-oriented databases (DOOD), Phoenix, Arizona, USA, 6–8 December, pp 204–221

  3. Baglioni M, Ferrara U, Romei A, Ruggieri R, Turini F (2003) Preprocessing and Mining Web Log Data for Web Personalization. In Cappelli A, Turini F (eds) Proceeding of the 8th Congress of the Italian Association for artificial intelligence (AI*IA), Pisa, Italy, 23–26 September, pp 237–249

  4. Baralis E, Cerquitelli T, Chiusano S (2005) Index support for frequent itemset mining in a relational DBMS. In: Proceedings of the 21st International Conference on data engineering (ICDE 2005), IEEE Computer Society, Tokyo, Japan, 5–8 April, pp 754–765

  5. Baralis E, Garza P, Quintarelli E, Tanca L (2007) Answering XML queries by means of data summaries. ACM Trans Info Syst 25(3): 1–10

    Google Scholar 

  6. Bentayeb F, Darmont J (2002) Decision tree modeling with relational views. In: Mohand-Said Hacid MS, Ras ZW, Zighed DA, Kodratoff Y (eds) Proceedings of the 13th International Symposium on foundations of intelligent systems (ISMIS), Lyon, France, 27–29 June, pp 423–431

  7. Bernhardt J, Chaudhuri S, Fayyad UM, Netz A (2001) Integrating data mining with SQL databases: OLE DB for Data Mining. In: Proceedings of the 17th International Conference on data engineering (ICDE), IEEE Computer Society, Heidelberg, Germany, 2–6 April, pp 379–387

  8. Bertino E, Catania B, Maddalena A, Skiadopoulos S, Terrovitis M, Vassiliadis P (2004) Modeling and Language Support for the Management of Pattern-Bases. In: Proceedings of the 16th International Conference on scientific and statistical database management (SSDBM), IEEE Computer Society. Santorini Island, Greece, 21–23 June, pp 265–274

  9. Cao B, Badia A (2009) Exploiting maximal redundancy to optimize SQL queries. Knowl Info Syst 20(2): 187–220

    Article  Google Scholar 

  10. Blockeel H, Calders T, Fromont É, Goethals B, Prado A (2008) Mining views: database views for data mining. In: IEEE Computer Society. Proceedings of the 24th International Conference on data engineering (ICDE), Cancún, México, 7–12 April, pp 1608–1611

  11. Blockeel H, Calders T, Fromont É, Goethals B, Prado A, Robardet C (2008) An inductive database prototype based on virtual mining views. In Li Y, Liu B, Sarawagi S (eds) Proceedings of the 14th ACM SIGKDD International Conference on knowledge discovery and data mining (KDD), Las Vegas, Nevada, USA, 24–27 August, pp 1061–1064

  12. Botta M, Boulicaut JF, Masson C, Meo R (2004) Query languages supporting descriptive rule mining: a comparative study. In: Meo R, Lanzi PL, Klemettinen M (eds) Database support for data mining applications: discovering knowledge with inductive queries, pp 24–51

  13. Braga D, Campi A, Ceri S, Klemettinen M, Lanzi PL (2003) Discovering interesting information in XML data with association rules. In: Proceedings of the 2003 ACM Symposium on applied computing (SAC), Melbourne, FL, 9–12 March, pp 450–454

  14. Ceri S, Meo R, Psaila G (1998) An extension to SQL for mining association rules. Data Min Knowl Discov 2(2): 195–224

    Article  Google Scholar 

  15. De Raedt L (2000) A Logical Database Mining Query Language. In: Cussens J, Frisch A (eds) Proceedings of the 10th International Conference on inductive logic programming (ILP), London, UK, 24–27 July, pp 78–92

  16. Euler T, Klinkenberg R, Mierswa I, Scholz M, Wurst M (2006) YALE: rapid prototyping for complex data mining tasks. In: Ungar LH, Craven M, Gunopulos D, Eliassi-Rad T (eds) Proceedings of the 12th ACM SIGKDD International Conference on knowledge discovery and data mining (KDD), Philadelphia, USA, 20–23 August, pp 935–940

  17. Flach PA (1998) From extensional to intensional knowledge: inductive logic programming techniques and their application to deductive databases. In: Freitag B, Decker H, Kifer M, Voronkov A (eds) Transactions and change in logic databases. Springer, Berlin, pp 356–387

    Chapter  Google Scholar 

  18. Fromont É, Blockeel H, Struyf J (2006) Integrating decision tree learning into inductive databases. In: Dzeroski S, Struyf J (eds) Proceedings of the 5th International Workshop on knowledge discovery in inductive databases (KDID), Springer, Berlin, 18 September, pp 81–96

  19. Fu Y, Han J, Koperski K, Wang W, Zaiane O (1996) DMQL: a data mining query language for relational databases. In: Proceedings of the SIGMOD Workshop on research issues in data mining and knowledge discovery (DMKD), Montreal, Canada, pp 122–133

  20. Giannotti F, Manco G, Pedreschi D, Turini F (1999) Experiences with a logic-based knowledge discovery support environment. In: Lamma E, Mello P (eds) Proceedings of the 6th Congress of the Italian Association for artificial intelligence (AI*IA), Bologna, Italy, 14–17 September, pp 202–213

  21. Giannotti F, Manco G, Turini F (2004) Specifying mining algorithms with iterative user-defined aggregates. IEEE Trans Knowl Data Eng 16(10): 1232–1246

    Article  Google Scholar 

  22. Giannotti F, Manco G, Turini F (2004) Towards a Logic Query Language for Data Mining. In: Meo R, Lanzi PL, Klemettinen M (eds) Database support for data mining applications. Springer, Berlin, pp 76–94

    Chapter  Google Scholar 

  23. Giannotti F, Manco G, Wijsen J (2003) Logical languages for data mining. Chomicki J, Meyden RVD, Saake G (eds) Logics for emerging applications of databases, Springer, Berlin, Germany, pp 325–368

  24. Grossi V, Romei A (2008) Extending KDDML with a visual metaphor for the KDD process. In: Sebillo M, Vitiello G, Schaefer G (eds) Proceedings of the 10th International Conference on visual information systems (VISUAL), Salerno, Italy, 11–12 September, pp 138–149

  25. IBM (2008) Intelligent Miner 8.2. http://www-01.ibm.com/software/data/iminer/

  26. Imielinski T, Mannila H (1996) A database perspective on knowledge discovery. Commun ACM 39(11): 58–64

    Article  Google Scholar 

  27. Imielinski T, Virmani A (1999) MSQL: a query language for database mining. Data Min Knowl Discov 2(4): 373–408

    Article  Google Scholar 

  28. Law YN, Wang H, Zaniolo C (2004) Query languages and data models for database sequences and data streams. In: Nascimento MA, Ozsu MT, Kossmann D, Miller RJ, Blakeley JA, Schiefer KB (eds) Proceedings of the 30th International Conference on very large data bases (VLDB), Toronto, Canada, 31 August–3 September, pp 492–503

  29. Lisi FA (2003) Data mining in hybrid languages via ILP. In: Calvanese D, Giacomo GD, Franconi E (eds) Proceedings of the International Workshop on description logics (DL’03), Rome, Italy, 5–7 September

  30. Liu HC, Yu JX, Zeleznikow J, Guan Y (2007) A logic-based approach to mining inductive databases. In: Shi Y, Dongarra J, Albada GDV (eds) Proceedings of the 7th International Conference on computational science (ICCS), Beijing, China, 27–30 May, pp 270–277

  31. Meo R, Psaila G (2006) An XML-based database for knowledge discovery. In: Grust T, Höpfner H, Illarramendi A, Jablonski S, Mesiti M, Müller S, Patranjan PL, Sattler KU, Spiliopoulou M, Wijsen J (eds) Current trends in database technology (EDBT 2006 Workshops PhD), Springer, Munich, pp 814–828

  32. Morik K (1997) Knowledge Discovery in databases—an inductive logic programming approach. In: Freksa C, Jantzen M, Valk R (eds) Foundations of computer science: potential-theory-cognition, to Wilfried Brauer on the occasion of his sixtieth birthday, Springer, London, pp 429–436

  33. Morzy T, Zakrzewicz M (1997) SQL-like language for database mining. In: Proceedings of the First East-European Symposium on advances in databases and information systems (ADBIS), Nevsky Dialect, St. Petersburg, Russia, 2–5 September, pp 331–317

  34. Ng PKL, Ng VTY (2008) RRSi: indexing XML data for proximity twig queries. Knowl Inf Syst 17(2): 193–216

    Article  Google Scholar 

  35. Nijssen S, Raedt LD (2006) IQL: a proposal for an inductive query language. In: Dzeroski S, Struyf J (eds) Proceedings of the 5th International Workshop on knowledge discovery in inductive databases (KDID), Berlin, Germany, 18 September, pp 189–207

  36. Orlando S, Palmerini P, Perego R, Silvestri F (2002) Adaptive and resources-aware mining of frequent sets. In: Proceedings of the 2002 IEEE International Conference on data mining (ICDM), IEEE Computer Society, Maebashi City, Japan, 9–12 December, pp 338–345

  37. Richter L, Wicker J, Kessler K, Kramer S (2008) An inductive database and query language in the relational model. In: Kemper A, Valduriez P, Mouaddib N, Teubner J, Bouzeghoub M, Markl V, Amsaleg L, Manolescu I (eds) Proceedings of the 11th International Conference on extending database technology (EDBT), Nantes, France, 25–29 March, pp 740–744

  38. Romei A, Ruggieri S, Turini F (2006) KDDML: a middleware language and system for knowledge discovery in databases. Data Knowl Eng 57(2): 179–220

    Article  Google Scholar 

  39. Romei A, Sciolla M, Turini F, Valentini M (2007) KDDML-G: a grid-enabled knowledge discovery system. Concurr Comput Pract Experience 19(13): 1785–1809

    Article  Google Scholar 

  40. Sarawagi S, Thomas S, Agrawal R (2000) Integrating association rule mining with relational database systems: alternatives and implications. Data Min Knowl Discov 4(2/3): 89–125

    Article  Google Scholar 

  41. SPSS (2007) CRISP-DM step by step data mining guide. Version 2.0 (January 2007). http://www.crisp-dm.org

  42. SPSS (2008) Clementine 12.0. http://www.spss.com/clementine

  43. The Data Mining Group (2009) The Predictive Model Markup Language (PMML). Version 4.0. http://www.dmg.org/pmml-v4-0.html

  44. The Object Management Group (2003) The common warehouse metamodel (CWM). Version 1.1. http://www.omg.org/

  45. Wang H, Zaniolo C (2000) Nonmonotonic reasoning in \({\mathcal{LDL}++}\). In: Minker J (eds) Logic-based artificial intelligence. Kluwer, Dordrecht, pp 523–544

  46. Wang H, Zaniolo C (2003) ATLaS: a native extension of SQL for data mining. In: Barbará D, Kamath C (eds) Proceedings of the Third SIAM International Conference on data mining, San Francisco, CA, USA, 1–3 May, pp 130–141

  47. Wicker J, Richter L, Kessler K, Kramer S (2008) SINDBAD and SiQL: an inductive database and query language in the relational model. In: Daelemans W, Goethals B, Morik K (eds) Proceedings of the European Conference on machine learning and knowledge discovery in databases (ECML/PKDD), Antwerp, Belgium, 15–19 September, pp 690–694

  48. Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng AFM, Liu B, Yu PS, Zhou ZH, Steinbach M, Hand DJ, Steinberg D (2008) Top 10 algorithms in data mining. Knowl Info Syst 14(1): 1–37

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Romei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romei, A., Turini, F. Inductive database languages: requirements and examples. Knowl Inf Syst 26, 351–384 (2011). https://doi.org/10.1007/s10115-009-0281-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-009-0281-4

Keywords

Navigation