Knowledge and Information Systems

, Volume 25, Issue 2, pp 389–420 | Cite as

Query processing issues in region-based image databases

Regular Paper

Abstract

Many modern image database systems adopt a region-based paradigm, in which images are segmented into homogeneous regions in order to improve the retrieval accuracy. With respect to the case where images are dealt with as a whole, this leads to some peculiar query processing issues that have not been investigated so far in an integrated way. Thus, it is currently hard to understand how the different alternatives for implementing the region-based image retrieval model might impact on performance. In this paper, we analyze in detail such issues, in particular the type of matching between regions (either one-to-one or many-to-many). Then, we propose a novel ranking model, based on the concept of Skyline, as an alternative to the usual one based on aggregation functions and k-Nearest Neighbors queries. We also discuss how different query types can be efficiently supported. For all the considered scenarios we detail efficient index-based algorithms that are provably correct. Extensive experimental analysis shows, among other things, that: (1) the 1–1 matching type has to be preferred to the NM one in terms of efficiency, whereas the two have comparable effectiveness, (2) indexing regions rather than images performs much better, and (3) the novel Skyline ranking model is consistently the most efficient one, even if this sometimes comes at the price of a reduced effectiveness.

Keywords

Image databases Region-based image retrieval Query processing k-Nearest Neighbors queries Skyline queries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ardizzoni S, Bartolini I, Patella M (1999) Windsurf: region-based image retrieval using wavelets. In: Proceedings of the 1st international workshop on similarity search (IWOSS’99). IEEE Computer Society, Florence, pp 167–173Google Scholar
  2. 2.
    Bartolini I, Ciaccia P (2007) Imagination: exploiting link analysis for accurate image annotation. In: Revised selected papers from the 5th international workshop on adaptive multimedial retrieval (AMR 2007). Lecture notes in computer science, vol 4918. Springer, Paris, pp 32–44Google Scholar
  3. 3.
    Bartolini I, Ciaccia P, Ntoutsi I, Patella M, Theodoridis Y (2009) The Panda framework for comparing patterns. Data Knowl Eng 68(2): 244–260CrossRefGoogle Scholar
  4. 4.
    Bartolini I, Ciaccia P, Oria V, Özsu T (2007) Flexible integration of multimedia sub-queries with qualitative preferences. Multimed Tools Appl 33(3): 275–300CrossRefGoogle Scholar
  5. 5.
    Bartolini I, Ciaccia P, Patella M (2000) A sound algorithm for region-based image retrieval using an index. In: Proceedings of the fourth international workshop on query processing and multimedia issues in distributed systems (QPMIDS 2000), London, UK, pp 930–934Google Scholar
  6. 6.
    Bartolini I, Zhang Z, Papadias D (2009) Collaborative filtering with personalized skylines (revision)Google Scholar
  7. 7.
    Börzsönyi S, Kossmann D, Stocker K (2001) The Skyline operator. In: Proceedings of the 17th International Conference on Data Engineering (ICDE 2001). IEEE Computer Society, Heidelberg, pp 421–430Google Scholar
  8. 8.
    Carson C, Belongie S, Greenspan H, Malik J (2002) Blobworld: image segmentation using expectation-maximization and its application to image querying. IEEE Trans Pattern Anal Mach Intell 24(8): 1026–1038CrossRefGoogle Scholar
  9. 9.
    Chávez E, Navarro G, Baeza-Yates R, Marroquín JL (2001) Proximity searching in metric spaces. ACM Comput Surv 33(3): 273–321CrossRefGoogle Scholar
  10. 10.
    Chiang T-W, Tsai T (2008) Querying color images using user-specified wavelet features. Knowl Inf Syst 15(1): 109–129CrossRefMathSciNetGoogle Scholar
  11. 11.
    Chomicki J (2003) Preference formulas in relational queries. ACM Trans Database Syst 28(4): 427–466CrossRefGoogle Scholar
  12. 12.
    Ciaccia P, Patella M (2002) Searching in metric spaces with user-defined and approximate distances. ACM Trans Database Syst 27(4): 398–437CrossRefGoogle Scholar
  13. 13.
    Ciaccia P, Patella M, Zezula P (1997) M-tree: an efficient access method for similarity search in metric spaces. In: Proceedings of the 23rd international conference on very large data bases (VLDB’97). Morgan Kaufmann, Athens, pp 426–435Google Scholar
  14. 14.
    Fishburn P (1999) Preference structures and their numerical representations. Theor Comput Sci 217(2): 359–383MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Gaede V, Günther O (1998) Multidimensional access methods. ACM Comput Surv 30(2): 170–231CrossRefGoogle Scholar
  16. 16.
    Gong Z, Liu Q (2008) Improving keyword based web image search with visual feature distribution and term expansion. Knowl Inf Syst (to appear)Google Scholar
  17. 17.
    Greenspan H, Dvir G, Rubner Y (2000) Region correspondence for image matching via EMD flow. In: Proceedings of the IEEE workshop on content-based access of image and video libraries (CBAIVL’00). IEEE Computer Society, New Orleans, pp 27–31Google Scholar
  18. 18.
    Guttman A (1984) R-trees: A dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD international conference on management of data. ACM Press, Boston, pp 47–57Google Scholar
  19. 19.
    Hjaltason GR, Samet H (1999) Distance browsing in spatial databases. ACM Trans Database Syst 24(2): 265–318CrossRefGoogle Scholar
  20. 20.
    Hjaltason GR, Samet H (2003) Index-driven similarity search in metric spaces. ACM Trans Database Syst 28(4): 517–580CrossRefGoogle Scholar
  21. 21.
    Ilyas IF, Beskales G, Soliman MA (2008) A survey of top-k query processing techniques in relational database systems. ACM Comput Surv 40(4)Google Scholar
  22. 22.
    Jing F, Li M, Zhang H-J, Zhang B (2004) An efficient and effective region-based image retrieval framework. IEEE Trans Image Process 13(5): 699–709CrossRefGoogle Scholar
  23. 23.
    Kailath T (1967) The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans Commun Technol 15(1): 52–60CrossRefGoogle Scholar
  24. 24.
    Krichel T (2007) Information retrieval performance measures for a current awareness report composition aid. Inf Process Manag 43(4): 1030–1043CrossRefGoogle Scholar
  25. 25.
    Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Res Logist Q 2: 83–97CrossRefGoogle Scholar
  26. 26.
    Lew MS, Sebe N, Djeraba C, Jain R (2006) Content-based multimedia information retrieval: state of the art and challenges. ACM Trans Multimed Comput Commun Appl 2(1): 1–19CrossRefGoogle Scholar
  27. 27.
    Liu Y, Zhang D, Lu G, Ma W-Y (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recognit 40(1): 262–282MATHCrossRefGoogle Scholar
  28. 28.
    Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the 7th International Conference on Computer Vision. IEEE Computer Society, Kerkyra, pp 1150–1157Google Scholar
  29. 29.
    Lucchese L, Mitra SK (2001) Color image segmentation: a state-of-the-art survey. Proc Indian Natl Sci Acad (INSA-A) 67(2): 207–221Google Scholar
  30. 30.
    Lv Q, Charikar M, Li K (2004) Image similarity search with compact data structures. In: Proceedings of the 2004 ACM CIKM international conference on information and knowledge management. ACM Press, Washington, DC, pp 208–217Google Scholar
  31. 31.
    Ma W-Y, Manjunath BS (1999) NeTra: a toolbox for navigating large image databases. Multimed Syst 7(3):184–198. http://vision.ece.ucsb.edu/netra/ Google Scholar
  32. 32.
    Natsev A, Rastogi R, Shim K (2004) WALRUS: a similarity retrieval algorithm for image databases. IEEE Trans Knowl Data Eng 16(3): 301–316CrossRefGoogle Scholar
  33. 33.
    Pan J-Y, Yang H-J, Faloutsos C, Duygulu P (2004) Automatic multimedia cross-modal correlation discovery. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, Seattle, pp 653–658Google Scholar
  34. 34.
    Papadias D, Karacapilidis NI, Arkoumanis D (1999) Processing fuzzy spatial queries: a configuration similarity approach. Int J Geogr Inf Sci 13(2): 93–118CrossRefGoogle Scholar
  35. 35.
    Patella M, Ciaccia P (2009) Approximate similarity search: a multi-faceted problem. J Discrete Algorithm 7(1): 36–48MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Rubner Y, Tomasi C (2000) Perceptual metrics for image database navigation. Kluwer, BostonGoogle Scholar
  37. 37.
    Salton G (1989) Automatic text processing: the transformation, analysis, and retrieval of information by computer. Addison-Wesley, ReadingGoogle Scholar
  38. 38.
    Shakhnarovich G, Darrell T, Indyk P (2006) Nearest-neighbors methods in learning and vision. Theory and practice. MIT Press, CambridgeGoogle Scholar
  39. 39.
    Smeulders AWM, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12): 1349–1380CrossRefGoogle Scholar
  40. 40.
    Smith JR, Chang S-F (1996) VisualSEEk: a fully automated content-based image query system. In: Proceedings of the 4th ACM international conference on multimedia. ACM Press, Boston, pp 87–98. http://www.ctr.columbia.edu/VisualSEEk
  41. 41.
    Stehling RO, Nascimento MA, Falcão AX (2003) Cell histograms versus color histograms for image representation and retrieval. Knowl Inf Syst 5(3): 315–336CrossRefGoogle Scholar
  42. 42.
    Stricker M, Orengo M (1995) Similarity of color images. In: Storage and retrieval for image and video databases SPIE, vol 2420, San Jose, pp 381–392Google Scholar
  43. 43.
    Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vis 7(1): 11–32CrossRefGoogle Scholar
  44. 44.
    Tao Y, Papadias D (2006) Maintaining sliding window skylines on data streams. IEEE Trans Knowl Data Eng 18(2): 377–391Google Scholar
  45. 45.
    Wang JZ, Li J, Wiederhold G (2001) SIMPLIcity: semantics-sensitive integrated matching for picture libraries. IEEE Trans Pattern Anal Mach Intell 23(9): 947–963CrossRefGoogle Scholar
  46. 46.
    Wang JZ, Wiederhold G, Firschein O, Wei SX (1997) Wavelet-based image indexing techniques with partial sketch retrieval capability. In: Proceedings of the 4th IEEE forum on research and technology advances in digital libraries (ADL’97), Washington, DC, pp 13–24Google Scholar
  47. 47.
    Weber R, Mlivoncic M (2003) Efficient region-based image retrieval. In: Proceedings of the 2003 ACM CIKM international conference on information and knowledge management. ACM Press, New Orleans, pp 69–76Google Scholar
  48. 48.
    Yuan Y, Lin X, Liu Q, Wang W, Yu JX, Zhang Q (2005) Efficient computation of the skyline cube. In: Proceedings of the 31st International Conference on Very Large Data Bases (VLDB 2005). Trondheim, Norway, pp 241–252Google Scholar
  49. 49.
    Zhang J, Marszałek M, Lazebnik S, Schmid C (2007) Local features and kernels for classification of texture and object categories: a comprehensive study. Int J Comput Vis 73(2): 213–238CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Ilaria Bartolini
    • 1
  • Paolo Ciaccia
    • 1
  • Marco Patella
    • 1
  1. 1.DEIS, Alma Mater StudiorumUniversità di BolognaBolognaItaly

Personalised recommendations