Advertisement

Knowledge and Information Systems

, Volume 20, Issue 2, pp 243–262 | Cite as

SPARQL graph pattern rewriting for OWL-DL inference queries

  • Yixin JingEmail author
  • Dongwon Jeong
  • Doo-Kwon Baik
Regular Paper

Abstract

This paper focuses on the issue of OWL-DL ontology queries implemented in SPARQL. Currently, ontology repositories construct inference ontology models, and match SPARQL queries to the models, to derive inference results. Because an inference model uses much more storage space than the original model, and cannot be reused as inference requirements vary, this method is not suitable for large-scale deployment. To solve this problem, this paper proposes a novel method that passes rewritten SPARQL queries to the original ontology model, to retrieve inference results. We define OWL-DL inference rules and apply them to rewriting Graph Patterns in queries. The paper classifies the inference rules and discusses how these rules affect query rewriting. To illustrate the advantages of our proposal, we present a prototype system based on Jena, and address query optimization, to eliminate the disadvantages of augmented query sentences. We perform a set of query tests and compare the results with related works. The results show that the proposed method results in significantly improved query efficiency, without compromising completeness or soundness.

Keywords

Graph pattern Ontology inference OWL-DL Query rewriting SPARQL Semantic web 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ARQ—A SPARQL Processor for Jena. http://jena.sourceforge.net/ARQ/
  2. 2.
    Broekstra J, Kampman A (2003) Inferencing and truth maintenance in RDF schema: exploring a naive practical approach. In: Proceedings of workshop on practical and scalable semantic systems at the second international semantic web conference, Sanibel Island, Florida, October 2003Google Scholar
  3. 3.
    Broekstra J, Kampman A (2003) SeRQL: a second generation RDF query language. In: Proceedings of SWAD-Europe workshop on semantic web storage and retrieval, Vrije Universiteit, Amsterdam, the Netherlands, November 2003Google Scholar
  4. 4.
    Broekstra J, Kampman A, van Harmelen F (2002) Sesame: a generic architecture for storing and querying RDF and RDF schema. In: Horrocks I, Hendler J (eds) Proceedings of international semantic web conference, Lecture Notes in Computer Science, vol 2342. Springer, Heidelberg, pp 54–68Google Scholar
  5. 5.
    Fikes R, Hayes P, Horrocks I (2003) OWL-QL—a language for deductive query answering on the semantic web. In: Technical report KSL-03-14, Stanford University, CAGoogle Scholar
  6. 6.
    Friedman-Hill E (2008) Jess: the rule engine for the Java Platform. http://herzberg.ca.sandia.gov/jess/
  7. 7.
    Fuxman A, Miller J (2005) First-order query rewriting for inconsistent databases. In: Proceedings of the tenth international conference on database theory, Scotland, pp 337–351Google Scholar
  8. 8.
    Guo Y, Pan Z, Heflin J (2004) An evaluation of knowledge base systems for large OWL datasets. In: Proceedings of the third international semantic web conference, Lecture Notes in Computer Science, vol 3298. Springer, Heidelberg, pp 274–288Google Scholar
  9. 9.
    Haarslev V, Moller R, Wessel M (2004) Querying the semantic Web with Racer + nRQL. In: Proceedings of the KI-2004 international workshop on applications of description logics, Ulm, Germany, 24 September 2004Google Scholar
  10. 10.
    Halevy AY (2001) Answering queries using views: a survey. VLDB J 10(4): 270–294zbMATHCrossRefGoogle Scholar
  11. 11.
    HAWK: OWL Repository and Toolkit. Lehigh University. http://swat.cse.lehigh.edu/
  12. 12.
    Hayes P (2004) RDF Semantics, W3C Recommendation 10 February 2004. http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
  13. 13.
    Horridge M, Bechhofer S, Noppens O (2007) Igniting the OWL 1.1 Touch Paper: The OWL API. In: Proceedings of the third OWL experienced and directions workshop, Innsbruck, Austria, June 2007Google Scholar
  14. 14.
    Horrocks I, Sattler U (2005) A tableaux decision procedure for SHOIQ. In: Proceedings of the 19th international joint conference on artificial intelligence, pp 448–453Google Scholar
  15. 15.
    Horrocks I, Tessaris S (2000) A conjunctive query language for description logic aboxes. In: Proceedings of the 17th national conference on artificial intelligence and 12th conference on innovative applications of artificial intelligence, pp 399–404Google Scholar
  16. 16.
    Horrocks I, Tessaris S (2002) Querying the semantic web: a formal approach. In: Horrocks I, Hendler J (eds) Proceedings of the 13th international semantic web conference, Lecture Notes in Computer Science, vol 2342. Springer, Heidelberg, pp 177–191Google Scholar
  17. 17.
    Jena—a semantic web framework for Java. http://jena.sourceforge.net
  18. 18.
    Jing Y, Jeong D, Baik D (2007) A Query-Oriented Semantic Entailment for RDF Ontology Query. In: Proceedings of the second international conference on complex systems and applications (ICCSA), J Dyn Continuous Discrete Impulsive Syst Ser B (DCDIS-B):1384–1388Google Scholar
  19. 19.
    Klyne G, Carroll JJ (2004) Resource description framework (RDF): concepts and abstract syntax, W3C Recommendation 10 February 2004. http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
  20. 20.
    Kopena J (2005) OWLJessKB: a semantic web reasoning tool. http://edge.cs.drexel.edu/assemblies/software/owljesskb/
  21. 21.
    Kotis K, Vouros GA (2005) Human-centered ontology engineering: the HCOME methodology. Knowl Inf Syst 10(1): 109–131CrossRefGoogle Scholar
  22. 22.
    Ludwig SA, Rana OF (2007) Comparing semantic registries—OWLJessKB and instanceStore. In: Proceedings of the 2007 workshop on service-oriented computing performance, Monterey, CA, June 2007Google Scholar
  23. 23.
    Noy NF, Klein M (2004) Ontology evolution: not the same as schema evolution. Knowl Inf Syst 6: 428–440CrossRefGoogle Scholar
  24. 24.
    Patel-Schneider PF, Hayes P, Horrocks I (2004) OWL web ontology language semantics and abstract syntax, W3C Recommendation 10 February 2004. http://www.w3.org/TR/2004/REC-owl-semantics-20040210/
  25. 25.
    Perez J, Arenas M, Gutierrez C (2006) Semantics and complexity of SPARQL. In: Proceedings of the fifth international semantic web conference, Lecture Notes in Computer Science, vol 4273. Springer, Heidelberg, pp 30–43Google Scholar
  26. 26.
    Pinto HS, Martins JP (2004) Ontologies: how can they be built? Knowl Inf Syst 6: 441–464CrossRefGoogle Scholar
  27. 27.
    Prud’hommeaux E, Seaborne A (2004) SPARQL query language for RDF, W3C Working Draft 12 October 2004. http://www.w3.org/TR/2004/WD-rdf-sparql-query-20041012/
  28. 28.
    Seaborne A (2004) RDQL—a query language for RDF. W3C Member Submission 9 January 2004. http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
  29. 29.
    Tsarkov D, Horrocks I (2006) FaCT++ description logic reasoner: system description. In: Proceedings of the international joint conference on automated reasoningGoogle Scholar
  30. 30.
    Vidal ME, Raschid L, Marquez N et al (2006) Query rewriting in the semantic web. In: Proceedings of the 22nd international conference on data engineering workshops, USA, 2006, p 7Google Scholar
  31. 31.
    Zhang C, Naughton J, DeWitt D et al (2001) On supporting containment queries in relational database management systems. In: Aref WG (ed) Proceedings of the 2001 ACM SIGMOD international conference on management of data (SIGMOD), Santa Barbara, 2001, pp 425–436Google Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringKorea UniversitySeoulSouth Korea
  2. 2.Department of Informatics and StatisticsKunsan National UniversityGunsanSouth Korea

Personalised recommendations