Skip to main content
Log in

A Geometric Based Connection between Fractional Calculus and Fractal Functions

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

Establishing the accurate relationship between fractional calculus and fractals is an important research content of fractional calculus theory. In the present paper, we investigate the relationship between fractional calculus and fractal functions, based only on fractal dimension considerations. Fractal dimension of the Riemann–Liouville fractional integral of continuous functions seems no more than fractal dimension of functions themselves. Meanwhile fractal dimension of the Riemann–Liouville fractional differential of continuous functions seems no less than fractal dimension of functions themselves when they exist. After further discussion, fractal dimension of the Riemann–Liouville fractional integral is at least linearly decreasing and fractal dimension of the Riemann–Liouville fractional differential is at most linearly increasing for the Hölder continuous functions. Investigation about other fractional calculus, such as the Weyl-Marchaud fractional derivative and the Weyl fractional integral has also been given elementary. This work is helpful to reveal the mechanism of fractional calculus on continuous functions. At the same time, it provides some theoretical basis for the rationality of the definition of fractional calculus. This is also helpful to reveal and explain the internal relationship between fractional calculus and fractals from the perspective of geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barkai, E., Metzler, R., Klafter, J.: From continuous time random walks to the fractional Fokker–Planck equation. Phys. Rev. E (3), 61, 132–156 (2000)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Bush, K. A.: Continuous functions without derivatives. Am. Math. Mon., 59, 222–225 (1952)

    Article  MathSciNet  Google Scholar 

  3. Butera, S., Paola, M. D.: A physically based connection between fractional calculus and fractal geometry. Ann. Physics, 350, 146–158 (2014)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Butzer, P. L., Kilbas, A. A., Trujillo, J. J.: Mellin transform analysis and integration by parts for Hadamard-type fractional integrals. J. Math. Anal. Appl., 270, 1–15 (2002)

    Article  MathSciNet  Google Scholar 

  5. Cui, X. X., Xiao, W.: What is the effect of the Weyl fractional integral on the Hölder continuous functions? Fractals, 29, 2150026 (2021)

    Article  ADS  Google Scholar 

  6. Falconer, K. J.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons, Chicheste, 1990

    Google Scholar 

  7. Ferrari, F.: Weyl and Marchaud derivatives: A forgotten history. Mathematica, 6, 1–25 (2018)

    Google Scholar 

  8. Fu, H., Wu, G. C., Yang, G.: Continuous-time random walk to a general fractional Fokker–Planck equation on fractal media. Eur. Phys. J.-Spec. Top., 230, 3927–3933 (2021)

    Article  Google Scholar 

  9. Hadamard, J.: Essai sur l’étude des fonctions données par leur développement de Taylor. Journal de Mathématiques Pures et Appliquées, 8, 101–186 (1892)

    Google Scholar 

  10. Hu, T. Y., Lau, K. S.: The sum of Radamacher functions and Hausdorff dimension. Math. Proc. Cambridge, 108, 91–103 (1990)

    Article  Google Scholar 

  11. Hu, T. Y., Lau, K. S.: Fractal dimensions and singularities of the Weierstrass type functions. Trans. Amer. Math. Soc., 335, 649–665 (1993)

    Article  MathSciNet  Google Scholar 

  12. Katugampola, U. N.: New approach to a generalized fractional integral. Appl. Math. Comput., 218, 860–865 (2011)

    MathSciNet  Google Scholar 

  13. Katugampola, U. N.: New approach to generalized fractional derivatives. J. Math. Anal. Appl., 6, 1–15 (2014)

    MathSciNet  Google Scholar 

  14. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and applications of fractional differential equations. North Holland Math. Studies, Vol. 204, Elsevier, Amsterdam, 2006

    Google Scholar 

  15. Kilbas, A. A., Titioura, A. A.: Nonlinear differential equations with Marchaud–Hadamard-type fractional derivative in the weighted sapce of summable functions. Math. Model. Anal., 12, 343–356 (2007)

    Article  MathSciNet  Google Scholar 

  16. Kiryakova, V.: A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal., 11, 875–885 (2008)

    MathSciNet  Google Scholar 

  17. Kolwankar, K. M., Gangal, A. D.: Fractional differentiability of nowhere differentiable functions and dimensions. Chaos Solitons Fractals, 6, 505–513 (1996)

    MathSciNet  Google Scholar 

  18. Kolwankar, K. M., Gangal, A. D.: Local fractional Fokker–Planck Equation. Phys. Rev. Lett., 80, 214–217 (1998)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. Liang, Y. S.: The relationship between the Box dimension of the Besicovitch functions and the orders of their fractional calculus. Appl. Math. Comput., 200, 197–207 (2008)

    MathSciNet  Google Scholar 

  20. Liang, Y. S.: On the fractional calculus of Besicovitch function. Chaos Solitons Fractals, 42, 2741–2747 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. Liang, Y. S.: Box dimensions of Riemann–Liouville fractional integrals of continuous functions of bounded variation. Nonlinear Anal., 72, 4304–4306 (2010)

    Article  MathSciNet  Google Scholar 

  22. Liang, Y. S.: Fractal dimension of Riemann–Liouville fractional integral of 1-dimensional continuous functions. Fract. Calc. Appl. Anal., 21, 1651–1658 (2018)

    Article  MathSciNet  Google Scholar 

  23. Liang, Y. S.: Estimation of fractal dimensions of Weyl fractional integral of certain continuous functions. Fractals, 28, 2050030 (2020)

    Article  ADS  Google Scholar 

  24. Liang, Y. S.: Progress on estimation of fractal dimensions of fractional calculus of continuous functions. Fractals, 27, 1950084 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  25. Liang, Y. S., Liu, N.: Fractal dimensions of Weyl–Marchaud fractional derivative of certain one-dimensional functions. Fractals, 27, 1950114 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  26. Liang, Y. S., Su, W. Y.: Riemann–Liouville fractional calculus of 1-dimensional continuous functions. Sci. China Math., 46, 423–438 (2016)

    Google Scholar 

  27. Liang, Y. S., Su, W. Y.: Fractal dimensions of fractional integral of continuous functions. Acta Math. Sin. (Engl. Ser.), 32, 1494–1508 (2016)

    Article  MathSciNet  Google Scholar 

  28. Liang, Y. S., Su, W. Y.: Von Koch curves and their fractional calculus. Acta Math. Sin. (Chin. Ser.), 54, 227–240 (2011)

    Google Scholar 

  29. Liang, Y. S., Su, W. Y.: Fractal dimension of certain continuous functions of unbounded variation. Fractals, 25, 1750009 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. Liang, Y. S., Wang, H. X.: Upper Box dimension of Riemann–Liouville fractional integral of fractal functions. Fractals, 29, 2150015 (2021)

    Article  ADS  Google Scholar 

  31. Liang, Y. S., Zhang, Q.: 1-dimensional continuous functions with uncountable unbounded variation points. Chinese Journal of Comtemporary Mathematics, 39, 129–136 (2018)

    MathSciNet  Google Scholar 

  32. Liang, Y. S., Zhang, Q., Yao, K.: Fractal dimension of fractional calculus of certain interpolation functions. Chinese Journal of Comtemporary Mathematics, 38, 93–100 (2017)

    MathSciNet  Google Scholar 

  33. Machado, J. T., Mainardi, F., Kiryakova, V.: Fractional Calculus: Quo Vadimus? (Where are we going?) Fract. Calc. Appl. Anal., 18, 495–526 (2015)

    Article  MathSciNet  Google Scholar 

  34. Mandelbrot, B. B.: The Fractal Geometry of Nature, Freeman, San Francisco, 1982

    Google Scholar 

  35. Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1976

    Google Scholar 

  36. Mu, L., Yao, K., Qiu, H., et al.: The Hausdorff dimension of Weyl–Marchaud fractional derivative of a type of fractal functions. Chin. Ann. Math. Ser. B, 38, 257–264 (2017)

    MathSciNet  Google Scholar 

  37. Mu, L., Yao, K., Wang, J.: Box dimension of Weyl fractional integral of continuous functions with bounded variation. Anal. Theory Appl., 32, 174–180 (2016)

    Article  MathSciNet  Google Scholar 

  38. Navascués, M. A.: Fractal polynomial interpolation. J. Math. Anal. Appl., 24, 401–418 (2005)

    MathSciNet  Google Scholar 

  39. Navascués, M. A.: Fractal approximation. Complex Anal. Oper. Theory, 4, 953–974 (2010)

    Article  MathSciNet  Google Scholar 

  40. Nigmatullin, R. R., Baleanu, D.: New relationships connecting a class of fractal objects and fractional integrals in space. Fract. Calc. Appl. Anal., 16, 1–26 (2013)

    Article  MathSciNet  Google Scholar 

  41. Nigmatullin, R. R., Baleanu, D.: Relationships between 1D and space fractals and fractional integrals and their applications in physics. Handbook of Fractional Calculus with Applications, 4, 183–219 (2019)

    MathSciNet  Google Scholar 

  42. Oldham, K. B., Spanier, J.: The Fractional Calculus, Academic Press, New York, 1974

    Google Scholar 

  43. Patzschke, N., Zähle, M.: Fractional differentiation in the self-affine case III–the density of the cantor set. Proc. Amer. Math. Soc., 117, 137–144 (1993)

    MathSciNet  Google Scholar 

  44. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, San Diego, 1999

    Google Scholar 

  45. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal., 5, 367–386 (2002)

    MathSciNet  Google Scholar 

  46. Pooseh, S., Almeida, R., Torres, F. M.: Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative, Numer. Funct. Anal. Optim., 33, 301–319 (2012)

    Article  MathSciNet  Google Scholar 

  47. Ross, B.: Fractional calculus and its applications. Proceedings of the International Conference Held at the University of New Haven, June 1974, Lecture Notes in Math., Vol. 457, Springer, Berlin, 1975

    Google Scholar 

  48. Ruan, H. J., Su, W. Y., Yao, K.: Box dimension and fractional integral of linear fractal interpolation functions. J. Approx. Theory, 161, 187–197 (2009)

    Article  MathSciNet  Google Scholar 

  49. Samko, S. G., Kilbas, A. A., Marichev, O. I.: Integrals and Derivatives of Fractional Order and Some of Their Applications, Naukai Tekhnika, Minsk, 1987

    Google Scholar 

  50. Shen, W. X.: Hausdorff dimension of the graphs of the classical Weierstrass functions. Math. Z., 289, 223–266 (2018)

    Article  MathSciNet  Google Scholar 

  51. Stein, E. M.: Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970

    Google Scholar 

  52. Su, W. Y.: Construction of fractal calculus. Sci. China Math., 45, 1587–1598 (2015)

    Google Scholar 

  53. Sun, Q. J., Su, W. Y.: Fractional integral and fractal function. Numer. Math. J. Chin. Univ. (Engl. Ser.), 11, 70–75 (2002)

    MathSciNet  CAS  Google Scholar 

  54. Tatom, F. B.: The relationship between fractional calculus and fractals. Fractals, 3, 217–229 (1995)

    Article  MathSciNet  Google Scholar 

  55. Teodoro, G. S., Machado, J. A., Oliveira, E. C.: A review of definitions of fractional derivatives and other operators. J. Comput. Phys., 388, 195–208 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  56. Tian, L.: The estimates of Hölder index and the Box dimension for the Hadamard fractional integral. Fractals, 29, 2150072 (2021)

    Article  ADS  Google Scholar 

  57. Tian, L.: Hölder continuity and Box dimension for the Weyl fractional integral. Fractals, 28, 2050032 (2020)

    Article  ADS  Google Scholar 

  58. Verma, S., Viswanathan, P.: A note on Katugampola fractional calculus and fractal dimensions. Appl. Math. Comput., 339, 220–230 (2018)

    MathSciNet  Google Scholar 

  59. Verma, S., Viswanathan, P.: Bivariate functions of bounded variation: Fractal dimension and fractional integral. Indagat. Math. New. Ser., 31, 294–309 (2020)

    Article  MathSciNet  Google Scholar 

  60. Wang, C. Y.: R-L Algorithm: An approximation algorithm for fractal signals based on fractional calculus. Fractals, 29, 2150243 (2021)

    Article  ADS  Google Scholar 

  61. Wang, J., Yao, K.: Construction and analysis of a special one-dimensional continuous functions. Fractals, 25, 1750020 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  62. Wang, J., Yao, K., Liang, Y. S.: On the connection between the order of Riemann-Liouvile fractional falculus and Hausdorff dimension of a fractal function. Anal. Theory Appl., 32, 283–290 (2016)

    Article  MathSciNet  CAS  Google Scholar 

  63. Wen, Z. Y.: Mathematical Foundations of Fractal Geometry (in Chinese), Science Technology Education Publication House, Shanghai, 2000

    Google Scholar 

  64. Wu, B.: The 2-adic derivatives and fractal dimension of Takagi-like function on 2-series field. Fract. Calc. Appl. Anal., 23, 875–885 (2020)

    Article  MathSciNet  Google Scholar 

  65. Wu, J. R.: The effects of the Riemann–Liouville fractional integral on the Box dimension of fractal graphs of Hölder continuous functions. Fractals, 28, 2050052 (2020)

    Article  ADS  Google Scholar 

  66. Wu, J. R.: On a linearity between fractal dimensions and order of fractional calculus in Hölder Space. Appl. Math. Comput., 385, 125433 (2020)

    MathSciNet  Google Scholar 

  67. Wu, X. E., Du, J. H.: Box dimension of Hadamard integral of continuous functions of bounded and unbounded variation. Fractals, 25, 1750035 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  68. Wu, Y. P., Zhang, X.: The Hadamard fractional calculus of a fractal function. Fractals, 26, 1850025 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  69. Xie, T. F., Zhou, S. P.: On a class of fractal functions with graph Box dimension 2. Chaos Solitons Fractals, 22, 135–139 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  70. Xie, T. F., Zhou, S. P.: On a class of singular continuous functions with graph Hausdorff dimension 2. Chaos Solitons Fractals, 32, 1625–1630 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  71. Xu, Q.: Fractional integrals and derivatives to a class of functions. Journal of Xuzhou Normal University (Natural Science Edition), 24, 19–23 (2006)

    MathSciNet  Google Scholar 

  72. Yao, K., Liang, Y. S., Fang, J. X.: The fractal dimensions of graphs of the Weyl-Marchaud fractional derivative of the Weierstrass-type function. Chaos Solitons Fractals, 35, 106–115 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  73. Yao, K., Liang, Y. S., Su, W. Y., et al.: Fractal dimension of fractional derivative of self-affine functions. Acta Math. Sin. (Engl. Ser.), 56, 693–698 (2013)

    Google Scholar 

  74. Yao, K., Su, W. Y., Zhou, S. P.: On the fractional calculus of a type of Weierstrass function. Chin. Ann. Math. Ser. B, 25(A), 711–716 (2004)

    MathSciNet  Google Scholar 

  75. Zähle, M.: Fractional differentiation in the self-affine case V-the local degree of differentiability. Math. Nachr., 185, 297–306 (1997)

    Article  MathSciNet  Google Scholar 

  76. Zähle, M., Ziezold, H.: Fractional derivatives of Weierstrass-type functions. J. Comput. Appl. Math., 76, 265–275 (1996)

    Article  MathSciNet  Google Scholar 

  77. Zhang, Q.: Some remarks on one-dimensional functions and their Riemann–Liouville fractional calculus. Acta Math. Sin. (Engl. Ser.), 30, 517–524 (2014)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  78. Zhang, Q., Liang, Y. S.: The Weyl–Marchaud fractional derivative of a type of self-affine functions. Appl. Math. Comput., 218, 8695–8701 (2012)

    MathSciNet  Google Scholar 

  79. Zhang, X., Peng, W. L.: Connection between the order of Katugampola fractional integral and fractal dimensions of Weierstrass function. College Math. J., 35, 25–31 (2019)

    CAS  Google Scholar 

  80. Zheng, W. X., Wang, S. W.: Real Function and Functional Analysis (in Chinese), High Education Publication House, Beijing, 1980

    Google Scholar 

Download references

Acknowledgements

We thank the referees for their time and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Shun Liang.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Additional information

Supported by National Natural Science Foundation of China (Grant No. 12071218) and the Fundamental Research Funds for the Central Universities (Grant No. 30917011340)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y.S., Su, W.Y. A Geometric Based Connection between Fractional Calculus and Fractal Functions. Acta. Math. Sin.-English Ser. 40, 537–567 (2024). https://doi.org/10.1007/s10114-023-1663-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-023-1663-3

Keywords

MR(2010) Subject Classification

Navigation