Skip to main content
Log in

Response Solutions for Degenerate Reversible Harmonic Oscillators with Zero-average Perturbation

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we consider a class of normally degenerate quasi-periodically forced reversible systems, obtained as perturbations of a set of harmonic oscillators,

$$\left\{ {\matrix{{\dot x = y + {f_1}(\omega t,x,y),} \hfill \cr {\dot y = \lambda {x^l} + {f_2}(\omega t,x,y),} \hfill \cr } } \right.$$

where 0 ≠ λ ∈ ℝ, l > 1 is an integer and the corresponding involution G is (−θ, x, −y) → (θ, x, y). The existence of response solutions of the above reversible systems has already been proved in [22] if [f2(ωt, 0, 0)] satisfies some non-zero average conditions (See the condition (H) in [22]), here [ · ] denotes the average of a continuous function on \({\mathbb{T}^d}\). However, discussing the existence of response solutions for the above systems encounters difficulties when [f2(ωt, 0, 0)] = 0, due to a degenerate implicit function must be solved. This article will be doing work in this direction. The purpose of this paper is to consider the case where [f2(ωt, 0, 0)] = 0. More precisely, with 2p < l, if f2 satisfies \([{f_2}(\omega t,0,0)] = [{{\partial {f_2}(\omega t,0,0)} \over {\partial x}}] = [{{{\partial ^2}{f_2}(\omega t,0,0)} \over {\partial {x^2}}}] = \cdots = [{{{\partial ^{p - 1}}{f_2}(\omega t,0,0)} \over {\partial {x^{p - 1}}}}] = 0\), either \({\lambda ^{ - 1}}[{{{\partial ^p}{f_2}(\omega t,0,0)} \over {\partial {x^p}}}] < 0\) as lp is even or \({\lambda ^{ - 1}}[{{{\partial ^p}{f_2}(\omega t,0,0)} \over {\partial {x^p}}}] \ne 0\) as lp is odd, we obtain the following results: (1) For \(\tilde \lambda < 0\) (see \({\tilde \lambda }\) in (2.2)) and ϵ sufficiently small, response solutions exist for each ω satisfying a weak non-resonant condition; (2) For \(\tilde \lambda < 0\) and ϵ* sufficiently small, there exists a Cantor set \({\cal E} \in (0,{_ * })\) with almost full Lebesgue measure such that response solutions exist for each \( \in {\cal E}\) if ω satisfies a Diophantine condition. In the remaining case where \({\lambda ^{ - 1}}[{{{\partial ^p}{f_2}(\omega t,0,0)} \over {\partial {x^p}}}] > 0\) and lp is even, we prove the system admits no response solutions in most regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Angeles, J.: Dynamic Response of Linear Mechanical Systems, Springer-Verlag, New York, 2011

    MATH  Google Scholar 

  2. Braaksma, B., Broer, H.: On a quasi-periodic Hopf bifurcation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 4(2), 115–168 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Broer, H. W., Ciocci, M. C., Hanßmann, H.: The quasi-periodic reversible Hopf bifurcation. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17, 2605–2623 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng, H., Si, W., Si, J.: Whiskered tori for forced beam equations with multi-dimensional Liouvillean. Journal of Dynamics and Differential Equations, 32, 705–739 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Corsi, L., Gentile, G.: Oscillator synchronisation under arbitrary quasi-periodic forcing. Comm. Math. Phys., 316, 489–529 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Corsi, L., Gentile, G.: Resonant tori of arbitrary codimension for quasi-periodically forced systems. Nonl. Diff. Equ. Appl., 24(1), Article 3 (2017)

  7. Den Hartog, J. P.: Mechanical Vibrations, McGraw-Hill, New York, 1940

    MATH  Google Scholar 

  8. Donaldson, B. K.: Introduction to Structural Dynamics, Cambridge University Press, Cambridge, UK, 2006

    Book  Google Scholar 

  9. Friedman, M.: Quasi-periodic solutions of nonlinear ordinary differential equations with small damping. Bull. Amer. Math. Soc., 73, 460–464 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gentile, G.: Degenerate lower-dimensional tori under the Bryuno condition. Ergod. Th. & Dynam. Sys., 27, 427–457 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gentile, G.: Quasi-periodic motions in strongly dissipative forced systems. Ergod. Th. & Dynam. Sys., 30(5), 1457–1469 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gentile, G.: Construction of quasi-periodic response solutions in forced strongly dissipative systems. Forum Math., 24(4), 791–808 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gentile, G., Mazzoccoli, A., Vaia, F.: Forced quasi-periodic oscillations in strongly dissipative systems of any finite dimension. Commun. Contemp. Math., 21, 1850064 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Han, Y., Li, Y., Yi, Y.: Degenerate lower-dimensional tori in Hamiltonian systems. J. Differential Equations, 227, 670–691 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hanßmann, H.: Quasi-periodic bifurcations in reversible systems. Regul. Chaotic Dyn., 16, 51–60 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, S., Liu, B.: Degenerate lower dimensional invariant tori in reversible system. Discrete and Continuous Dynamical Systems, 38(8), 3735–3763 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, S., Liu, B.: Completely degenerate lower-dimensional invariant tori for Hamiltonian system. J. Differential Equations, 266(11), 7459–7480 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jing, T., Si, W.: Completely degenerate lower-dimensional invariant tori in reversible systems. Proceedings of the American Mathematical Society, 149, 4247–4260 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lou, Z., Geng, J.: Quasi-periodic response solutions in forced reversible systems with Liouvillean frequencies. J. Differential Equations, 263, 3894–3927 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Minorsky, N.: Introduction to Non-Linear Mechanics, J. W. Edwards, Ann Arbor, MI, 1947

  21. Moser, J.: Combination tones for Duffings equation. Comm. Pure Appl. Math., 18, 167–181 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  22. Si, W.: Response solutions for degenerate reversible harmonic oscillators. Discrete and Continuous Dynamical Systems, 41(8), 3951–3972 (2021)

    Article  MathSciNet  Google Scholar 

  23. Si, W., Si, J.: Construction of response solutionss for two classes of quasi-periodically forced four-dimensional nonlinear systems with degenerate equilibrium point under small perturbations. J. Differential Equations, 262, 4771–4822 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Si, W., Yi, Y.: Completely degenerate responsive tori in Hamiltonian systems. Nonlinearity, 33, 6072–6098 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Si, W., Yi, Y.: Response solutions in degenerate oscillators under degenerate perturbations. Annales Henri Poincaré, 23, 333–360 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stoker, J. J.: Nonlinear Vibrations in Mechanical and Electrical Systems, Interscience Publisher, New York, 1950

    MATH  Google Scholar 

  27. Von Kármán, Th. The engineer grapples with nonlinear problems. Bull. Am. Math. Soc., 46, 615–683 (1940)

    Article  MATH  Google Scholar 

  28. Wang, J., You, J., Zhou, Q.: Response solutions for quasi-periodically forced harmonic oscillators. Trans. Amer. Math. Soc., 369(6), 4251–4274 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, X., Xu, J., Zhang, D.: Degenerate lower dimensional tori in reversible systems. J. Math. Anal. Appl., 387, 776–790 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, X., Xu, J., Zhang, D.: On the persistence of degenerate lower-dimensional tori in reversible systems. Ergod. Th. & Dynam. Sys., 35(2015), 2311–2333 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, X., Si, W., Si, J.: Stoker’s problem for quasi-periodically forced reversible systems with multidimensional Liouvillean frequency. SIAM J. Appl. Dyn. Syst., 19, 2286–2321 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. You, J.: A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian systems, Commun. Math. Phys., 192, 145–168 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements The authors would like to thank anonymous referees for their significantly contributions which help to improve the the initial version of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Si.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Additional information

J. Si was partially supported by the National Natural Science Foundation of China (Grant Nos. 11971261, 11571201); W. Si was partially supported by the National Natural Science Foundation of China (Grant Nos. 12001315, 12071255) and Shandong Provincial Natural Science Foundation, China (Grant No. ZR2020MA015)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X.Y., Si, J.G. & Si, W. Response Solutions for Degenerate Reversible Harmonic Oscillators with Zero-average Perturbation. Acta. Math. Sin.-English Ser. 39, 2006–2030 (2023). https://doi.org/10.1007/s10114-023-1539-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-023-1539-6

Keywords

MR(2010) Subject Classification

Navigation