Skip to main content
Log in

Multiscale Analysis of Semilinear Damped Stochastic Wave Equations

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper we proceed with the multiscale analysis of semilinear damped stochastic wave motions. The analysis is made by combining the well-known sigma convergence method with its stochastic counterpart, associated to some compactness results such as the Prokhorov and Skorokhod theorems. We derive the equivalent model, which is of the same type as the micro-model. One of the novelties of the work is that the corrector problem is solved in the classical sense of distributions, thereby allowing numerical computations of the homogenized coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bensoussan, A.: Some existence results for stochastic partial differential equations, In Partial Differential Equations and Applications (Trento 1990), Pitman Res. Notes Math. Ser., Vol. 268, Longman Scientific and Technical, Harlow, UK, 1992, 37–53

    Google Scholar 

  2. Bensoussan, A.: Stochastic Navier-Stokes Equations. Acta Appl. Math., 38, 267–304 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Besicovitch, A. S.: Almost Periodic Functions, Dover Publications, Cambridge, 1954

    Google Scholar 

  4. Bohr, H.: Almost Periodic Functions, Chelsea, New York, 1947

    MATH  Google Scholar 

  5. Billingsley, P.: Convergence of Probability Measures, Second Edition, John Wiley, New York, 1999

    Book  MATH  Google Scholar 

  6. Bourgeat, A., Mikeliċ, A., Wright, S.: Stochastic two-scale convergence in the mean and applications. J. Reine Angew. Math., 456, 19–51 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Casado Diaz, J., Gayte, I.: The two-scale convergence method applied to generalized Besicovitch spaces. Proc. R. Soc. Lond. A, 458, 2925–2946 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, UK, 1992

    Book  MATH  Google Scholar 

  9. Deugoue, G., Woukeng, J. L.: Sigma-convergence of semilinear stochastic wave equations. Nonlinear Differ. Equ. Appl., 25, 1–29 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fouetio, A., Woukeng, J. L.: Homogenization of hyperbolic damped stochastic wave equations. Acta Math. Sinica, Engl. Ser, 34, 233–254 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gikhman, I. I., Skorokhod, A. V.: Stochastic Differential Equations, Ergebnisse der Mathematik und ihrer Grenzgebiete, 72, Springer-Verlag, Berlin, 1972

    Book  Google Scholar 

  12. Jäger, W., Tambue, A., Woukeng, J. L.: Approximation of homogenized coefficients in deterministic homogenization and convergence rates in the asymptotic almost periodic setting, arXiv:1906.11501, 2019

  13. Jiang, Y. X., Wang, W., Feng, Z. S.: Spatial homogenization of stochastic wave equations with large interaction. Canad. Math. Bull., 59, 542–552 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Krylov, N. V., Rozovskii, B. L.: Stochastic evolution equations. J. Soviet Math., 14, 1233–1277 (1981)

    Article  MATH  Google Scholar 

  15. Kurtz, T. G., Protter, P.: Weak convergence of stochastic integrals and differential equations, In: (D. Talay and L. Tubaro, editors), Probability Models for Nonlinear Partial Differential Equations, Montecatini Terme, 1995, Lecture Notes in Mathematics, Vol. 1627, Springer-Verlag, Berlin, 1996, 1–41

    Google Scholar 

  16. Lejay, A.: On the convergence of stochastic integrals driven by processes converging on account of a homogenization property. Electron. J. Probability, 7, 1–18 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires (in French), Dunod, Paris, 1969

    MATH  Google Scholar 

  18. Mohammed, M., Sango, M.: Homogenization of linear hyperbolic stochastic partial differential equation with rapidly oscillating coefficients: the two-scale convergence method. Asymp. Anal., 91, 341–371 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Nguetseng, G.: Homogenization structures and applications I. Z. Anal. Anwen., 22, 73–107 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nguetseng, G.: Almost periodic homogenization: asymptotic analysis of a second order elliptic equation, Preprint, 2000

  21. Nguetseng, G., Woukeng, J. L.: Deterministic homogenization of parabolic monotone operators with time dependent coefficients. Electr. J. Differ. Eq., 2004, 1–23 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Pardoux, E.: Equations aux dérivées partielles stochastiques monotones (in French), Thèse de Doctorat, Université Paris-Sud, 1975

  23. Prohorov, Y. V.: Convergence of random processes and limit theorems in probability theory (in Russian). Teor. Veroyatnost. i Primenen., 1, 177–238 (1956)

    MathSciNet  Google Scholar 

  24. Razafimandimby, P., Sango, M., Woukeng, J. L.: Homogenization of a stochastic nonlinear reaction-diffusion equation with a large reaction term: the almost periodic framework. J. Math. Anal. Appl., 394, 186–212 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Razafimandimby, P., Woukeng, J. L.: Homogenization of nonlinear stochastic partial differential equations in a general ergodic environment. Stochastic Anal. Appl., 31, 755–784 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, Grundlehren der mathematschen Wissensehorften, Vol. 293, Springer-Verlag, Berlin, 1999

    Book  MATH  Google Scholar 

  27. Sango, M.: Splitting-up scheme for nonlinear stochastic hyperbolic equations. Forum Math., 25, 931–965 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Simon, J.: Compact sets in the space Lp(0, T, B). Ann. Mat. Pura Appl., 146, 65–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Skorokhod, A. V.: Limit theorems for stochastic processes (in Russian). Teor. Veroyatnost. i Primenen., 1, 289–319 (1956)

    MathSciNet  MATH  Google Scholar 

  30. Woukeng, J. L.: Homogenization in algebras with mean value. Banach J. Math. Anal., 9, 142–182 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Woukeng, J. L.: Introverted algebras with mean value and applications. Nonlinear Anal. TMA, 99, 190–215 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Louis Woukeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouetio, A., Nguetseng, G. & Woukeng, J.L. Multiscale Analysis of Semilinear Damped Stochastic Wave Equations. Acta. Math. Sin.-English Ser. 39, 1305–1331 (2023). https://doi.org/10.1007/s10114-023-1043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-023-1043-z

Keywords

MR(2010) Subject Classification

Navigation