Skip to main content
Log in

Brake Orbits of a Reversible Even Hamiltonian System Near an Equilibrium

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we consider the brake orbits of a reversible even Hamiltonian system near an equilibrium. Let the Hamiltonian system (HS) = JH′(x) satisfies H(0) = 0, H′(0) = 0, reversible and even conditions H(Nx) = H(x) and H(−x) = H(x) for all x ∈ ℝ2n. Suppose the quadratic form \(Q(x) = {1 \over 2}\left\langle {{H^{\prime \prime}}(0)x,x} \right\rangle \) is non-degenerate. Fix τ0 > 0 and assume that ℝ2n = EF decomposes into linear subspaces E and F which are invariant under the flow associated to the linear system = JH″(0)x and such that each solution of the above linear system in E is τ0-periodic whereas no solution in F {0} is τ0-periodic. Write σ(τ0) = σq(τ0) for the signature of Q|E. If σ(τ0) ≠ 0, we prove that either there exists a sequence of brake orbits xk → 0 with τk-periodic on the hypersurface H−1(0) where τkτ0; or for each λ close to 0 with λσ(τ0) > 0 the hypersurface H−1(λ) contains at least \({1 \over 2}\left| {\sigma ({\tau _0})} \right|\) distinct brake orbits of the Hamiltonian system (HS) near 0 with periods near τ0. Such result for periodic solutions was proved by Bartsch in 1997.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartsch, T.: A generalization of the Weinstein—Moser theorems on periodic orbits of a Hamiltonian system near an equilibrium. Ann. Inst. H. Poincaré Anal. Non Linéaire, 6, 691–718 (1997)

    Article  MathSciNet  Google Scholar 

  2. Bartsch, T.: Topological Methods for Variational Problems with Symmetries, Lecture Notes in Mathematics, Vol. 1560, Springer, Berlin, Heidelberg, 1993

    Book  Google Scholar 

  3. Bröcker, T., Dieck, T. T.: Representations of Compact Lie Groups, Springer, New York, 1991

    MATH  Google Scholar 

  4. Duan, H., Long, Y., Zhu, C.: Index iteration theories for periodic orbits: old and new. Nonlinear Anal., 201, 111999, 26 pp. (2000)

    Article  MathSciNet  Google Scholar 

  5. Ekeland, I.: Convexity Methods in Hamiltonian Mechanics, Springer-Verlag, Berlin, 1990

    Book  Google Scholar 

  6. Fadell, E., Rabinowitz, P. H.: Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Invent. Math., 45, 139–174 (1978)

    Article  MathSciNet  Google Scholar 

  7. Giambò, R., Giannoni, F., Piccione, P.: Multiple brake orbits in m-dimensional disks. Calc. Var. Partial Differential Equations, 54(3), 2553–2580 (2015)

    Article  MathSciNet  Google Scholar 

  8. Kim, J., Kim, S., Kwon, M.: Equivariant wrapped Floer homology and symmetric periodic Reeb orbits. Xiv:1811.08099v1

  9. Liu, C., Zhang, D.: Seifert conjecture in the even convex case. Comm. Pure Appl. Math., 67(10), 1563–1604 (2014)

    Article  MathSciNet  Google Scholar 

  10. Long, Y.: Index Theory for Symplectic Paths with Applications, Birkhäuser, Basel, 2002

    Book  Google Scholar 

  11. Long, Y., Zhang, D., Zhu, C.: Multiple brake orbits in bounded convex symmetric domains. Adv. Math., 203, 568–635 (2006)

    Article  MathSciNet  Google Scholar 

  12. Lyapunov, A. M.: Problèm général de la stabilité du mouvement. Ann. Fac. Sci. Univ. Toulouse (2), 9, 203–474 (1907)

    Article  Google Scholar 

  13. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989

    Book  Google Scholar 

  14. Moser, J.: Periodic orbits near an equilibrium and a theorem by Alan Weinstein. Comm. Pure Appl. Math., 29(6), 724–747 (1976)

    Article  MathSciNet  Google Scholar 

  15. Robbin, J. W., Salamon, D.: Dynamical systems, shape theory and the Conley index. Ergodic Theory Dynam. Systems, 8, 375–393 (1988)

    Article  MathSciNet  Google Scholar 

  16. Seifert, H.: Periodische Bewegungen mechanischer Systeme. Math. Z., 51, 197–216 (1948)

    Article  MathSciNet  Google Scholar 

  17. Weinstein, A.: Normal modes for nonlinear Hamiltonian systems. Invent. Math., 20, 47–57 (1973)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duan Zhi Zhang.

Additional information

Partially supported by the NSF of China (Grant Nos. 17190271, 11422103, 11771341), National Key R&D Program of China (Grant No. 2020YFA0713301) and Nankai University

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z.J., Wang, F.J. & Zhang, D.Z. Brake Orbits of a Reversible Even Hamiltonian System Near an Equilibrium. Acta. Math. Sin.-English Ser. 38, 263–280 (2022). https://doi.org/10.1007/s10114-022-0473-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-022-0473-3

Keywords

MR(2010) Subject Classification

Navigation