Skip to main content
Log in

The Convex-Set Algebra and Intersection Theory on the Toric Riemann-Zariski Space

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In previous work of the author, a top intersection product of toric b-divisors on a smooth complete toric variety is defined. It is shown that a nef toric b-divisor corresponds to a convex set and that its top inetersection number equals the volume of this convex set. The goal of this article is to extend this result and define an intersection product of sufficiently positive toric b-classes of arbitrary codimension. For this, we extend the polytope algebra of McMullen to the so called convex-set algebra and we show that it embeds in the toric b-Chow group. In this way, the convex-set algebra can be viewed as a ring for an intersection theory for sufficiently positive toric b-classes. As an application, we show that some Hodge type inequalities are satisfied for the convex set algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aluffi, P.: Modification systems and integration in their Chow groups. Selecta Math., 11, 155–202 (2004)

    Article  MathSciNet  Google Scholar 

  2. Ambro, F., Corti, A., Fujino, O., et al.: Flips for 3-folds and 4-folds, Oxford Univ. Press, Oxford, 2007

    MATH  Google Scholar 

  3. Botero, A. M.: Canonical decomposition of a difference of convex sets. J. Algebraic Combin., 2(4), 585–602 (2019)

    Article  MathSciNet  Google Scholar 

  4. Botero, A. M.: Intersection theory of b-divisors in toric varieties. J. Algebraic Geom., 28, 291–338 (2018)

    Article  MathSciNet  Google Scholar 

  5. Brion, M.: Piecewise polynomial functions, convex polytopes and enumerative geometry. Banach Center Publications, 36, 25–44 (1996)

    Article  MathSciNet  Google Scholar 

  6. Brion, M.: The structure of the polytope algebra. Tohoku Math. J., 49, 1–32 (1997)

    Article  MathSciNet  Google Scholar 

  7. Cox, D., Little, J. B., Schenk, H.: Toric Varieties, Graduate Texts in Mathematics, Vol. 124, Amer. Math. Soc., Providence, RI, 2011

    Book  Google Scholar 

  8. Dang, N. B., Favre, C.: Intersection theory of nef b-divisor classes, arXiv:2007.04549

  9. Fulton, W.: Intersection Theory, 2nd Ed., Springer-Verlag, Berlin, 1998

    Book  Google Scholar 

  10. Fulton, W.: Introduction to Toric Varieties, Princeton Univ. Press, Princeton, NJ, 1993

    Book  Google Scholar 

  11. Fulton, W., Sturmfels, B.: Intersection theory on toric varieties. Topology, 36(2), 335–353 (1997)

    Article  MathSciNet  Google Scholar 

  12. Kaveh, K., Khovanskii, A. G.: Convex bodies and multiplicities of ideals. Proc. Steklov Inst. Math., 286(1), 268–284 (2014)

    Article  MathSciNet  Google Scholar 

  13. Kaveh, K., Khovanskii, A. G.: Mixed volume and an extension of intersection theory of divisors. Moskow Mathematical Journal, 10(2), 343–375 (2014)

    Article  MathSciNet  Google Scholar 

  14. Kaveh, K., Khovanskii, A. G.: Newton Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. of Math. (2), 176(2), 925–978 (2012)

    Article  MathSciNet  Google Scholar 

  15. McMullen, P.: On simple polytopes. Invent. Math., 113, 419–444 (1993)

    Article  MathSciNet  Google Scholar 

  16. McMullen, P.: Separation in the polytope algebra. Beiträge Geom. Algebra, 34, 15–30 (1993)

    MathSciNet  MATH  Google Scholar 

  17. McMullen, P.: The polytope algebra. Adv. Math., 78, 76–130 (1989)

    Article  MathSciNet  Google Scholar 

  18. Payne, S.: Equivariant Chow cohomology of toric varieties. Math. Res. Lett., 13(1), 29–41 (2006)

    Article  MathSciNet  Google Scholar 

  19. Rockafellar, R. T.: Convex Analysis, Princeton Univ. Press, Princeton, NJ, 1972

    Google Scholar 

  20. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia Math. Appl., Vol. 44, Cambridge Univ. Press, Cambridge, 1993

    Book  Google Scholar 

  21. Vaquié, M.: Valuations. Progr. Math., 181, 539–590 (2000)

    MathSciNet  Google Scholar 

  22. Zariski, O., Samuel, P.: Commutative Algebra, Vol. II, Graduate Texts in Mathematics, Vol. 28, Springer- Verlag, New York, 1975

    MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referee for all her/his constructive remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana María Botero.

Additional information

Supported by the SFB Higher Invariants at the University of Regensburg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botero, A.M. The Convex-Set Algebra and Intersection Theory on the Toric Riemann-Zariski Space. Acta. Math. Sin.-English Ser. 38, 465–486 (2022). https://doi.org/10.1007/s10114-022-0383-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-022-0383-4

Keywords

MR(2010) Subject Classification

Navigation