Skip to main content
Log in

The Symbolic Extension Theory in Topological Dynamics

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this survey we will present the symbolic extension theory in topological dynamics, which was built over the past twenty years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, R. L., Flatto, L.: Geodesic flows, interval maps, and symbolic dynamics. Bull. Amer. Math. Soc. (N.S.), 25(2), 229–334 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adler, R. L., Konheim, A. G., McAndrew, M. H.: Topological entropy. Trans. Amer. Math. Soc., 114, 309–319 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adler, R. L., Weiss, B.: Similarity of automorphisms of the torus. Memoirs of the American Mathematical Society, 98, vi+43 (1970)

    MathSciNet  MATH  Google Scholar 

  4. Bowen, R.: Markov partitions for Axiom A diffeomorphisms. Amer. J. Math., 92, 725–747 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bowen, R.: Symbolic dynamics for hyperbolic flows. Amer. J. Math., 95, 429–460 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470, Springer-Verlag, Berlin, 2008

    Book  MATH  Google Scholar 

  7. Boyle, M.: Quotients of subshifts. Adler conference lecture, unpublished notes, 1991

  8. Boyle, M., Downarowicz, T.: The entropy theory of symbolic extensions. Invent. Math., 156(1), 119–161 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boyle, M., Downarowicz, T.: Symbolic extension entropy: Cr examples, products and flows. Discrete Contin. Dyn. Syst., 16(2), 329–341 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boyle, M., Fiebig, D., Fiebig, U.: Residual entropy, conditional entropy and subshift covers. Forum Math., 14(5), 713–757 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Breuillard, E., Green, B., Tao, T.: The structure of approximate groups. Publ. Math. Inst. Hautes Études Sci., 116, 115–221 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burguet, D.: Examples of Cr interval map with large symbolic extension entropy. Discrete Contin. Dyn. Syst., 26(3), 873–899 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Burguet, D.: Symbolic extensions for nonuniformly entropy expanding maps. Colloq. Math., 121(1), 129–151 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Burguet, D.: C2 surface diffeomorphisms have symbolic extensions. Invent. Math., 186(1), 191–236 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Burguet, D., Downarowicz, T.: Uniform generators, symbolic extensions with an embedding, and structure of periodic orbits. J. Dynam. Differential Equations, 31(2), 815–852 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Burguet, D., Liao, G.: Symbolic extensions for 3-dimensional diffeomorphisms. J. Anal. Math., arXiv: 1911.00206 (to appear)

  17. Buzzi, J.: Intrinsic ergodicity of smooth interval maps. Israel J. Math., 100, 125–161 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cuntz, J.: Dimension functions on simple C*-algebras. Math. Ann., 233(2), 145–153 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Danilenko, A. I.: Entropy theory from the orbital point of view. Monatsh. Math., 134(2), 121–141 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Danilenko, A. I., Park, K. K.: Generators and Bernoullian factors for amenable actions and cocycles on their orbits. Ergodic Theory Dynam. Systems, 22(6), 1715–1745 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Díaz, L. J., Fisher, T.: Symbolic extensions and partially hyperbolic diffeomorphisms. Discrete Contin. Dyn. Syst., 29(4), 1419–1441 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dirichlet, G. L.: Vereinfachung der theorie der binaren quadratischen formen von positiver determinante. Abh. K. Akad. Wiss. Berlin Math., 99–115 (1854)

    Google Scholar 

  23. Dooley, A. H., Zhang, G. H.: Co-induction in dynamical systems. Ergodic Theory Dynam. Systems, 32(3), 919–940 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dooley, A. H., Zhang, G. H.: Local entropy theory of a random dynamical system. Memoirs of the American Mathematical Society, 233(1099), vi+106 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Downarowicz, T.: Entropy of a symbolic extension of a dynamical system. Ergodic Theory Dynam. Systems, 21(4), 1051–1070 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Downarowicz, T.: Entropy structure. J. Anal. Math., 96, 57–116 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Downarowicz, T.: Symbolic extensions of smooth interval maps. Probab. Surv., 7, 84–104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Downarowicz, T.: Entropy in Dynamical Systems. New Mathematical Monographs, vol. 18, Cambridge University Press, Cambridge, 2011

    Book  MATH  Google Scholar 

  29. Downarowicz, T., Frej, B., Romagnoli, P. P.: Shearer’s inequality and infimum rule for Shannon entropy and topological entropy. In: Dynamics and Numbers, Contemp. Math., vol. 669, pp. 63–75, Amer. Math. Soc., Providence, RI, 2016

    Chapter  MATH  Google Scholar 

  30. Downarowicz, T., Huczek, D.: Dynamical quasitilings of amenable groups. Bull. Pol. Acad. Sci. Math., 66(1), 45–55 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Downarowicz, T., Huczek, D., Zhang, G. H.: Tilings of amenable groups. J. Reine Angew. Math., 747, 277–298 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Downarowicz, T., Maass, A.: Smooth interval maps have symbolic extensions: the antarctic theorem. Invent. Math., 176(3), 617–636 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Downarowicz, T., Newhouse, S.: Symbolic extensions and smooth dynamical systems. Invent. Math., 160(3), 453–499 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Downarowicz, T., Serafin, J.: Possible entropy functions. Israel J. Math., 135, 221–250 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Downarowicz, T., Zhang, G. H.: Symbolic extensions of amenable group actions and the comparison property. Memoirs of the American Mathematical Society, arXiv:1901.01457 (to appear)

  36. Følner, E.: On groups with full Banach mean value. Math. Scand., 3, 243–254 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gauss, C. F.: Disquisitiones Arithmeticae. Translated and with a preface by Arthur A. Clarke, Revised by William C. Waterhouse, Cornelius Greither and A. W. Grootendorst and with a preface by Waterhouse, Springer-Verlag, New York, 1986

    MATH  Google Scholar 

  38. Glasner, E.: Ergodic Theory via Joinings. Mathematical Surveys and Monographs, vol. 101, American Mathematical Society, Providence, RI, 2003

    Book  MATH  Google Scholar 

  39. Glasner, E., Thouvenot, J. P., Weiss, B.: Entropy theory without a past. Ergodic Theory Dynam. Systems, 20(5), 1355–1370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Goodman, T. N. T.: Relating topological entropy and measure entropy. Bull. London Math. Soc., 3, 176–180 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  41. Goodwyn, L. W.: Topological entropy bounds measure-theoretic entropy. Proc. Amer. Math. Soc., 23, 679–688 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  42. Grigorchuk, R. I.: Degrees of growth of finitely generated groups and the theory of invariant means. Izv. Akad. Nauk SSSR Ser. Mat., 48(5), 939–985 (1984)

    MathSciNet  Google Scholar 

  43. Gutman, Y.: Embedding ℤk-actions in cubical shifts and ℤk-symbolic extensions. Ergodic Theory Dynam. Systems, 31(2), 383–403 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Gutman, Y., Lindenstrauss, E., Tsukamoto, M.: Mean dimension of ℤk-actions. Geom. Funct. Anal., 26(3), 778–817 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hadamard, J.: Les surfaces à courbures opposées et leurs lignes géodesiques. J. Math. Pures Appl. (5), 4, 27–73 (1898)

    MATH  Google Scholar 

  46. Hedlund, G. A.: Endomorphisms and automorphisms of the shift dynamical system. Math. Systems Theory, 3, 320–375 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  47. Huang, W., Ye, X. D., Zhang, G. H.: Lowering topological entropy over subsets. Ergodic Theory Dynam. Systems, 30(1), 181–209 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Huang, W., Ye, X. D., Zhang, G. H.: Local entropy theory for a countable discrete amenable group action. J. Funct. Anal., 261(4), 1028–1082 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Huang, W., Ye, X. D., Zhang, G. H.: Lowering topological entropy over subsets revisited. Trans. Amer. Math. Soc., 366(8), 4423–4442 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Huczek, D.: Zero-dimensional extensions of amenable group actions. Studia Math., 256(2), 121–145 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  51. Katok, S., Ugarcovici, I.: Symbolic dynamics for the modular surface and beyond. Bull. Amer. Math. Soc. (N.S.), 44(1), 87–132 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kerr, D.: Dimension, comparison and almost finitness. J. Eur. Math. Soc. (JEMS), 22(11), 3697–3745 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. Kerr, D., Li, H. F.: Independence in topological and C*-dynamics. Math. Ann., 338(4), 869–926 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kerr, D., Li, H. F.: Combinatorial independence in measurable dynamics. J. Funct. Anal., 256(5), 1341–1386 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kerr, D., Li, H. F.: Ergodic Theory: Independence and Dichotomies. Springer Monographs in Mathematics, Springer, Cham, 2016

    Book  MATH  Google Scholar 

  56. Kerr, D., Szabó, G.: Almost finiteness and the small boundary property. Comm. Math. Phys., 374, 1–31 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  57. Kitchens, B. P.: Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts. Universitext, Springer-Verlag, Berlin, 1998

    Book  MATH  Google Scholar 

  58. Kolmogorov, A. N.: Entropy per unit time as a metric invariant of automorphisms. Dokl. Akad. Nauk SSSR, 124, 754–755 (1959)

    MathSciNet  MATH  Google Scholar 

  59. Krieger, W.: On entropy and generators of measure-preserving transformations. Trans. Amer. Math. Soc., 149, 453–464 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  60. Kulesza, J.: Zero-dimensional covers of finite-dimensional dynamical systems. Ergodic Theory Dynam. Systems, 15(5), 939–950 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  61. Ledrappier, F.: A variational principle for the topological conditional entropy. In: Ergodic Theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978), Lecture Notes in Math., vol. 729, pp. 78–88, Springer, Berlin, 1979

    Chapter  Google Scholar 

  62. Li, H. F., Thom, A.: Entropy, determinants, and L2-torsion. J. Amer. Math. Soc., 27(1), 239–292 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. Liao, H. C., Tikuisis, A.: Almost finiteness, comparison, and tracial \({\cal Z} - {\rm{stability}}\). Preprint, arXiv:2001.10107 (2020)

  64. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995

    Book  MATH  Google Scholar 

  65. Lindenstrauss, E.: Mean dimension, small entropy factors and an embedding theorem. Inst. Hautes Études Sci. Publ. Math., 89, 227–262 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  66. Lindenstrauss, E., Weiss, B.: Mean topological dimension. Israel J. Math., 115, 1–24 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  67. Magnus, W.: Residually finite groups. Bull. Amer. Math. Soc., 75, 305–316 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  68. Misiurewicz, M.: Diffeomorphism without any measure with maximal entropy. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 21, 903–910 (1973)

    MathSciNet  MATH  Google Scholar 

  69. Misiurewicz, M.: A short proof of the variational principle for a \({\bf{Z}}_ + ^N\) action on a compact space. In: International Conference on Dynamical Systems in Mathematical Physics (Rennes, 1975), pp. 147–157, Astiérisque, no. 40, 1976

  70. Misiurewicz, M.: Topological conditional entropy. Studia Math., 55(2), 175–200 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  71. Morse, M., Hedlund, G. A.: Symbolic Dynamics. Amer. J. Math., 60(4), 815–866 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  72. Moulin Ollagnier, J.: Ergodic Theory and Statistical Mechanics. Lecture Notes in Mathematics, vol. 1115, Springer-Verlag, Berlin, 1985

    Book  MATH  Google Scholar 

  73. Moulin Ollagnier, J., Pinchon, D.: Groupes pavables et principe variationnel. Z. Wahrsch. Verw. Gebiete, 48(1), 71–79 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  74. Moulin Ollagnier, J., Pinchon, D.: The variational principle. Studia Math., 72(2), 151–159 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  75. Namioka, I.: Følner’s conditions for amenable semi-groups. Math. Scand., 15, 18–28 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  76. Ornstein, D. S., Weiss, B.: Entropy and isomorphism theorems for actions of amenable groups. J. Analyse Math., 48, 1–141 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  77. Paterson, A. L. T.: Amenability. Mathematical Surveys and Monographs, vol. 29, American Mathematical Society, Providence, RI, 1988

    Book  MATH  Google Scholar 

  78. Phalempin, M.: Representation of congruent sequences of tilings on amenable groups. Internship Report (unpublished), University of Rennes, 2016

  79. Pier, J. P.: Amenable Locally Compact Groups. Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984

    Google Scholar 

  80. Ratner, M. E.: Markov decomposition for an u-flow on a three-dimensional manifold. Mat. Zametki, 6, 693–704 (1969)

    MathSciNet  Google Scholar 

  81. Reddy, W. L.: Lifting expansive homeomorphisms to symbolic flows. Math. Systems Theory, 2, 91–92 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  82. Rørdam, M.: On the structure of simple C*-algebras tensored with a UHF-algebra. II. J. Funct. Anal., 107(2), 255–269 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  83. Rørdam, M.: The stable and the real rank of \({\cal Z} - {\rm{absorbing}}\) C*-algebras. Internat. J. Math., 15(10), 1065–1084 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  84. Rosenthal, A.: Finite uniform generators for ergodic, finite entropy, free actions of amenable groups. Probab. Theory Related Fields, 77(2), 147–166 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  85. Rudolph, D. J., Weiss, B.: Entropy and mixing for amenable group actions. Ann. of Math. (2), 151(3), 1119–1150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  86. Seward, B.: Krieger’s finite generator theorem for actions of countable groups I. Invent. Math., 215(1), 265–310 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  87. Sinaĭ, Y. G.: Flows with finite entropy. Dokl. Akad. Nauk SSSR, 125, 1200–1202 (1959)

    MathSciNet  MATH  Google Scholar 

  88. Sinaĭ, Y. G.: Markov partitions and y-diffeomorphisms. Funkcional. Anal. i Priložen, 2(1), 64–89 (1968)

    MathSciNet  Google Scholar 

  89. Stepin, A. M., Tagi-Zade, A. T.: Variational characterization of topological pressure of the amenable groups of transformations. Dokl. Akad. Nauk SSSR, 254(3), 545–549 (1980)

    MathSciNet  MATH  Google Scholar 

  90. Szabió, G.: Private communication (2017)

  91. Von Neumann, J.: Zur allgemeinen theorie des masses. Fund. Math., 13, 73–116 (1929)

    Article  MATH  Google Scholar 

  92. Šujan, Š.: Generators for amenable group actions. Monatsh. Math., 95(1), 67–79 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  93. Ward, T., Zhang, Q.: The Abramov—Rokhlin entropy addition formula for amenable group actions. Monatsh. Math., 114(3–4), 317–329 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  94. Weiss, B.: Monotileable amenable groups. In: Topology, Ergodic Theory, Real Algebraic Geometry, Amer. Math. Soc. Transl. Ser. 2, vol. 202, pp. 257–262, Amer. Math. Soc., Providence, RI, 2001

    Google Scholar 

  95. Weiss, B.: Actions of amenable groups. In: Topics in Dynamics and Ergodic Theory, London Math. Soc. Lecture Note Ser., vol. 310, pp. 226–262, Cambridge Univ. Press, Cambridge, 2003

    Chapter  Google Scholar 

  96. Winter, W.: Decomposition rank and \({\cal Z} - {\rm{stability}}\). Invent. Math., 179(2), 229–301 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Hua Zhang.

Additional information

Tomasz Downarowicz is supported by National Science Center, Poland (Grant No. 2018/30/M/ST1/00061) and by the Wroclaw University of Science and Technology (Grant No. 049U/0052/19); Guohua Zhang is supported by National Natural Science Foundation of China (Grants Nos. 11671094, 11722103 and 11731003) 1) Corresponding author We remark that several typical classes of amenable groups, including residually finite amenable groups, satisfy the above mentioned property [94].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Downarowicz, T., Zhang, G.H. The Symbolic Extension Theory in Topological Dynamics. Acta. Math. Sin.-English Ser. 38, 107–136 (2022). https://doi.org/10.1007/s10114-022-0311-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-022-0311-7

Keywords

MR(2010) Subject Classification

Navigation