Skip to main content
Log in

Distribution Function of the Blow up Time of the Solution of an Anticipating Random Fatigue Equation

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we study the distribution function of the time of explosion of a stochastic differential equation modeling the length of the dominant crack due to fatigue. The main novelty is that initial condition is regarded as an anticipating random variable and the stochastic integral is in the forward sense. Under suitable conditions, we use the substitution formula from Russo and Vallois to find the local solution of this equation. Then, we find the law of blow up time by proving some results on barrier crossing probabilities of Brownian bridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abundo, M.: Some conditional crossing results of Brownian motion over a piecewise-linear boundary. Statist. Probab. Lett., 58, 131–145 (2002)

    Article  MathSciNet  Google Scholar 

  2. Ahn, H., Kohatsu-Higa, A.: The Euler scheme for anticipating stochastic differential equations. Stochastics Rep., 54, 247–269 (1995)

    Article  MathSciNet  Google Scholar 

  3. Aksamit, A., Jeanblanc, M.: Enlargement of Filtration with Finance in View, SpringerBriefs in Quantitative Finance, Springer, Cham, 2017

    Book  Google Scholar 

  4. Arnold, L.: Stochastic Differential Equations: Theory and Applications, (Translated from the German) Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974

    MATH  Google Scholar 

  5. Augustin, P.: Simulation of fatigue crack growth in integrally stiffened panels under the constant amplitude and spectrum loading. Fatigue of Aircraft Structures, 1, 5–19 (2009)

    Article  Google Scholar 

  6. Beghin, L., Orsingher, E.: On the maximum of the generalized Brownian bridge. Liet. Mat. Rink., 39, 200–213 (1999)

    Article  MathSciNet  Google Scholar 

  7. Borodin, A. N., Salminen, P.: Handbook of Brownian Motion-Facts and Formulae, Probability and Its Applications, Second Ed., Birkhäuser Verlag, Basel, 2002

    Book  Google Scholar 

  8. Chamis, C. C.: Damage Tolerance and Reliability of Turbine Engine Components, NASA Glenn Research Center, 1999

    Google Scholar 

  9. Dávila, J., Bonder, J. F., Rossi, J. D., et al.: Numerical analysis of stochastic differential equations with explosions. Stoch. Anal. Appl., 23, 809–825 (2005)

    Article  MathSciNet  Google Scholar 

  10. Doob, J. L.: Heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statistics, 20, 393–403 (1949)

    Article  MathSciNet  Google Scholar 

  11. Feller, W.: Diffusion processes in one dimension. Trans. Amer. Math. Soc., 77, 1–31 (1954)

    Article  MathSciNet  Google Scholar 

  12. Ford, A. C., Gramling, H., Samuel, C. L., Sov, J. V., Srinivasan, A., Prui, L. A.: Micromechanisms of fatigue crack growth in polycarbonate polyurethane: time dependent and hydration effects. Journal of the Mechanical Behavior of Biomedical Materials, 79, 324–331 (2018)

    Article  Google Scholar 

  13. Frost, N. E., Dugdale, D. S.: The propagation of fatigue cracks in sheet specimens. J. Mech. Phys. Solids, 6(2), 92–110 (1958)

    Article  Google Scholar 

  14. Itô, K.: Stochastic integral. Proc. Imp. Acad. Tokyo, 20, 519–524 (1944)

    MathSciNet  MATH  Google Scholar 

  15. Jafari, H., Rahimi, G.: Small-time asymptotics in geometric Asian options for a stochastic volatility jump-diffusion model. Int. J. Theor. Appl. Finance, 22, 1950005 (2019)

    Article  MathSciNet  Google Scholar 

  16. Karatzas, I., Ruf, J.: Distribution of the time to explosion for one-dimensional diffusions. Probab. Theory Related Fields, 164, 1027–1069 (2016)

    Article  MathSciNet  Google Scholar 

  17. Kohatsu-Higa, A.: Models for insider trading with finite utility, In Paris-Princeton Lectures on Mathematical Finance 2004, Lecture Notes in Math., Vol. 1919, Springer, Berlin, 2007, 103–171

    Chapter  Google Scholar 

  18. Kohatsu-Higa, A., León, J. A.: Anticipating stochastic differential equations of Stratonovich type. Appl. Math. Optim., 36, 263–289 (1997)

    Article  MathSciNet  Google Scholar 

  19. Kohatsu-Higa, A., Sulem, A.: Utility maximization in an insider influenced market. Math. Finance, 16, 153–179 (2006)

    Article  MathSciNet  Google Scholar 

  20. Lee, J. M.: Introduction to Smooth Manifolds, Second ed., Graduate Texts in Mathematics, Vol. 218, Springer, New York, 2013

    MATH  Google Scholar 

  21. León, J. A., Navarro, N., Nualart, D.: An anticipating calculus approach to the utility maximization of an insider. Math. Finance, 13(1), 171–185 (2003)

    Article  MathSciNet  Google Scholar 

  22. León, J. A., Peralta, L.: Some Feller and Osgood type criteria for semilinear stochastic differential equations. Stoch. Dyn., 17, 1750011, (2017)

    Article  MathSciNet  Google Scholar 

  23. León, J. A., Peralta, L., Villa-Morales, J.: On the distribution of explosion time of stochastic differential equations. Bol. Soc. Mat. Mexicana (3), 19, 125–138 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Lin. K. Y., Styuar, A. V.: Probabilistic approach to damage tolerance design of aircraft composite structures. J. Aircr., 44, 1309–1317 (2007)

    Article  Google Scholar 

  25. Mannella, R., Mcclintock, P. V. E.: Itô versus Stratonovich: 30 years later, Fluctuation and Noise Letters, 1, 1240010 (2012)

    Article  Google Scholar 

  26. McKean, H. P.: Stochastic integrals, (Reprint of the 1969 edition, with errata) AMS Chelsea Publishing, Providence, RI, 2005

    MATH  Google Scholar 

  27. Molent, L., McDonald, M., Barter, S., Jones, R.: Evaluation of spectrum fatigue crack growth using variable amplitude data. International Journal of Fatigue, 30, 119–137 (2008)

    Article  Google Scholar 

  28. Navarro, N. A.: Dos modelos estocásticos para transacciones con información privilegiada en mercados financieros y dependencia con memoria larga en tiempos de ocupación, Ph.D. Thesis, Centro de investigación CINVESTAV IPN, 2004

    Google Scholar 

  29. Nualart, D.: Noncausal stochastic integrals and calculus, In: Stochastic analysis and related topics (Silivri, 1986), Lecture Notes in Math., Vol. 1316, Springer, Berlin, 1988, 80–129

    Chapter  Google Scholar 

  30. Osgood, W. F.: Beweis der Existenz einer Lösung der Differentialgleichung \(\frac{dy}{dx}=f(x,y)\) ohne Hinzunahme der Cauchy-Lipschitz’schen Bedingung. Monatsh. Math. Phys., 9, 331–345 (1898)

    Article  MathSciNet  Google Scholar 

  31. Pardoux, E.: Applications of anticipating stochastic calculus to stochastic differential equations, In Stochastic Analysis and Related Topics, II (Silivri, 1988), Lecture Notes in Math., Vol. 1444, Springer, Berlin, 1990, 63–105

    Chapter  Google Scholar 

  32. Paris, P., Erdogan, F.: A critical analysis of crack propagation laws. J. Fluids Eng., 85, 528–533 (1963)

    Google Scholar 

  33. Pfeiffer, P. E.: Probability for Applications, Springer Texts in Statistics, Springer-Verlag, New York, 1990

    Google Scholar 

  34. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, Third Ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 293, Springer-Verlag, Berlin, 1999

    Book  Google Scholar 

  35. Russo, F., Vallois, P.: Forward, backward and symmetric stochastic integration. Probab. Theory Related Fields, 97, 403–421 (1993)

    Article  MathSciNet  Google Scholar 

  36. Scheike, T. H.: A boundary-crossing result for Brownian motion. J. Appl. Probab., 29, 448–453 (1992)

    Article  MathSciNet  Google Scholar 

  37. Sobczyk, K.: Modelling of random fatigue crack growth. Engineering Fracture Mechanics, 24, 609–623 (1986)

    Article  Google Scholar 

  38. Sobczyk, K., Spencer, B. J.: Random Fatigue: From Data to Theory, Academic Press Inc., Boston, MA., 1992

    MATH  Google Scholar 

  39. Torres, S., Tudor, C. A.: The Euler scheme for a class of anticipating stochastic differential equations. Random Oper. Stochastic Equations, 12, 211–224 (2004)

    Article  MathSciNet  Google Scholar 

  40. Valluri, R. S.: Some recent developments at “GALCIT” concerning a theory of metal fatigue. Acta Metall., 11(7), 759–775 (1963)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Jorge A. León (Control Automático, CINVESTAV-IPN, Mexico) for the idea of this problem and the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Peralta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peralta, L. Distribution Function of the Blow up Time of the Solution of an Anticipating Random Fatigue Equation. Acta. Math. Sin.-English Ser. 37, 551–564 (2021). https://doi.org/10.1007/s10114-021-9403-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-021-9403-z

Keywords

MR(2010) Subject Classification

Navigation