Skip to main content
Log in

Finite Diffeomorphism Types of Four Dimensional Ricci Flow with Bounded Scalar Curvature

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we consider Ricci flow on four dimensional closed manifold with bounded scalar curvature, noncollasping volume and bounded diameter. Under such conditions, we can show that the manifold has finitely many diffeomorphism types, which generalizes Cheeger-Naber’s result to bounded scalar curvature along Ricci flow. In particular, this implies the manifold has uniform L2 Riemann curvature bound. As an application, we point out that four dimensional Ricci flow would not have uniform scalar curvature upper bound if the initial metric only satisfying lower Ricci curvature bound, lower volume bound and upper diameter bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Anderson, M. T.: Ricci curvature bounds and Einstein metrics on compact manifolds. J. Amer. Math. Soc., 2, 455–490 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, M., Cheeger, J.: Diffeomorphism finiteness for manifolds with Ricci curvature and Ln/2-norm of curvature bounded. Geom. Funct. Anal., 1(3), 231–252 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bamler, R.: Structure theory of singular spaces. J. Funct. Anal., 272(6), 2504–2627 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bamler, R.: Convergence of Ricci flows with bounded scalar curvature. Ann. of Math. (2), 188(3), 753–831 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bamler, R., Zhang, Q.: Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature. Adv. Math., 319, 396–450 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bamler, R., Zhang, Q.: Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature Part II. Calc. Var. Partial Differential Equations, 58(2), Art. 49, 14 pp. (2019)

  7. [7] Bando, S., Kasue, A., Nakajima, H.: On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth. Invent. Math., 97, 313–349 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Böhm, C., Wilking, B.: Manifolds with positive curvature operators are space forms. Ann. of Math. (2), 167(3), 1079–1097 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brendle, S., Schoen, R.: Manifolds with 1/4-pinched curvature are space forms. J. Amer. Math. Soc., 22(1), 287–307 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, H., Zhu, X.: A complete proof of the Poincare and geometrization conjectures-application of the Hamilton-Perelman theory of the Ricci flow. Asian J. Math., 10(2), 165–492 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheeger, J.: Finiteness theorems for Riemannian manifolds. Amer. Jour. Math., 92, 61–74 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheeger, J., Colding, T. H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math., 144(1), 189–237 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheeger, J., Colding, T. H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom., 46(3), 406–480 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheeger, J., Jiang, W., Naber, A.: Rectifiability of singular sets in noncollapsed spaces with Ricci curvature bounded below. Ann. of Math. (2), 193(2), 407–538 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheeger, J., Naber, A.: Lower bounds on Ricci curvature and quantitative behavior of singular sets. Invent. Math., 191, 321–339 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cheeger, J., Naber, A.: Regularity of Einstein Manifolds and the Codimension 4 Conjecture. Ann. of Math. (2), 182(3), 1093–1165 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, X., Wang, B.: Space of Ricci flows (II)-Part B: Weak compactness of the flows. J. Differential Geom., 116(1), 1–123 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Colding, T.: Ricci curvature and volume convergence. Ann. of Math. (2), 145(3), 477–501 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ge, H., Jiang, W.: ϵ-regularity for shrinking Ricci solitons and Ricci flows. Geom. Funct. Anal., 27(5), 1231–1256 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Hamilton,: Three-manifolds with positive Ricci curvature. J. Differential Geometry, 17(2), 255–306 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hebey, E.: Nonlinear analysis on manifolds: Sobolev Spaces and Inequalities, Courant Lect. Notes Math. 5, Courant Institute of Mathematical Sciences, New York, 2000

    MATH  Google Scholar 

  22. Hochard, R.: Short-time existence of the Ricci flow on complete, non-collapsed 3-manifolds with Ricci curvature bounded from below, arXiv:1603.08726v1 [math.DG], 2016

  23. Jiang, W.: Bergman kernel along the Khler-Ricci flow and Tian’s conjecture. J. Reine Angew. Math., 717, 195–226 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Jiang, W., Naber, A.: L2 curvature bounds on manifolds with bounded Ricci curvature. Ann. of Math. (2), 193(1), 107–222 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jiang, W., Wang, F., Zhu, X.: Bergman kernels for a sequence of almost Kähler-Ricci solitons. Ann. Inst. Fourier (Grenoble), 67(3), 1279–1320 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Koch, H., Lamm, T.: Geometric flows with rough initial data. Asian J. Math., 16(2), 209–235 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kleiner, B., Lott, J.: Notes on Perelman’s papers. Geometry & Topology, 12(5), 2587–2855 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Morgan, J., Tian, G.: Ricci Flow and the Poincare Conjecture. Clay Mathematics Monographs, 3. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2007. xlii+521 pp. ISBN: 978-0-8218-4328-4

    MATH  Google Scholar 

  29. Perelman, G.: Construction of manifolds of positive Ricci curvature with big volume and large Betti numbers. In: Comparison Geometry (Berkeley, CA, 1993–94), 157–163, Math. Sci. Res. Inst. Publ., 30, Cambridge Univ. Press, Cambridge, 1997

    Google Scholar 

  30. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159v1 [math.DG], 2002

  31. Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv:math.DG/0303109, 2003

  32. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv: 0307245, 2003

  33. Petersen, P., Wei, G. F.: Relative volume comparison with integral curvature bounds. Geom. Funct. Anal., 7(6), 1031–1045 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Petersen, P., Wei, G. F.: Analysis and geometry on manifolds with integral Ricci curvature bounds. II. Trans. Amer. Math. Soc., 353(2), 457–478 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Peters, S.: Cheeger’s finiteness theorem for diffeomorphism classes of Riemannian manifolds. J. Reine Angew. Math., 349, 77–82 (1984)

    MathSciNet  MATH  Google Scholar 

  36. Simon, M.: Deformation of C0 Riemannian metrics in the direction of their Ricci curvature. Comm. Anal. Geom., 10(5), 1033–1074 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Simon, M.: Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below. J. Reine Angew. Math., 662, 59–94 (2012)

    MathSciNet  MATH  Google Scholar 

  38. Simon, M., Topping, P.: Local control on the geometry in 3D Ricci flow, arXiv:1611.06137 [math.DG], 2016

  39. Simon, M., Topping, P.: Local mollification of Riemannian metrics using Ricci flow, and Ricci limit spaces, arXiv:1706.09490v1 [math.DG], 2017

  40. Song, J., Tian, G.: The Kähler-Ricci flow on surfaces of positive Kodaira dimension. Invent. Math., 170(3), 609–653 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Song, J., Tian, G.: Canonical measures and Kahler-Ricci flow. J. Amer. Math. Soc., 25(2), 303–353 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Song, J., Tian, G.: The Kahler-Ricci flow through singularities. Invent. Math., 207(2), 519–595 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tian, G.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math., 101(1), 101–172 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tian, G., Zhang, Z. L.: Regularity of Kahler-Ricci flows on Fano manifolds. Acta Math., 216(1), 127–176 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tian, G., Zhang, Z.: On the Kähler-Ricci flow on projective manifolds of general type. Chinese Ann. Math. Ser. B, 27(2), 179–192 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, B.: On the conditions to extend Ricci flow (II). Int. Math. Res. Not. IMRN, 14, 3192–3223 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Wei, G.: Manifolds with a lower Ricci curvature bound. In: Surveys in Differential Geometry. Vol. XI, 203–227, Surv. Differ. Geom., 11, Int. Press, Somerville, MA, 2007

    Google Scholar 

  48. Ye, R.: The logarithmic Sobolev inequality along the Ricci flow. Communications in Mathematics and Statistics, 3, 1–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, Q.: A uniform Sobolev inequality under Ricci flow. Int. Math. Res. Not. IMRN, 17, Art. ID rnm056, 17 pp. (2007)

  50. Zhang, Q.: Bounds on volume growth of geodesic balls under Ricci flow. Math. Res. Lett., 19(1), 245–253 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Shuai Jiang.

Additional information

Supported by NSFC (Grant No. 11701507) and the Fundamental Research Funds for the Central Universities 2019QNA3001 and DECRA 190101471

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W.S. Finite Diffeomorphism Types of Four Dimensional Ricci Flow with Bounded Scalar Curvature. Acta. Math. Sin.-English Ser. 37, 1751–1767 (2021). https://doi.org/10.1007/s10114-021-0149-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-021-0149-4

Keywords

MR(2010) Subject Classification

Navigation