Skip to main content
Log in

Inverse Curvature Flows of Rotation Hypersurfaces

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

We consider the inverse curvature flows of smooth, closed and strictly convex rotation hypersurfaces in space forms \(\mathbb{M}_{k}^{n+1}\) with speed function given by Fα, where α ∈ (0, 1] for κ = 0, −1, α =1 for κ = 1 and F is a smooth, symmetric, strictly increasing and 1-homogeneous function of the principal curvatures of the evolving hypersurfaces. We show that the curvature pinching ratio of the evolving hypersurface is controlled by its initial value, and prove the long time existence and convergence of the flows. No second derivatives conditions are required on F.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, B.: Contraction of convex hypersurfaces in Riemannian spaces. J. Differential Geom., 39(2), 407–431 (1994)

    Article  MathSciNet  Google Scholar 

  2. Andrews, B.: Fully nonlinear parabolic equations in two space variables, arXiv: math.DG/0402235 (2004)

  3. Andrews, B.: Pinching estimates and motion of hypersurfaces by curvature functions. J. Reine Angew. Math., 608, 17–33 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Andrews, B., Huang, Z., Li, H.: Uniqueness for a class of embedded Weingarten hypersurfaces in Sn+1, In: Introduction to Modern Mathematics, Adv. Lect. Math. (ALM), Vol. 33, Int. Press, Somerville, MA, 2015, 95–107

    Google Scholar 

  5. Chow, B., Gulliver, R.: Aleksandrov reflection and nonlinear evolution equations. I. The n-sphere and n-ball. Calc. Var. Partial Differential Equations, 4(3), 249–264 (1996)

    Article  MathSciNet  Google Scholar 

  6. do Carmo, M., Dajczer, M.: Rotation hypersurfaces in spaces of constant curvature. Trans. Amer. Math. Soc., 277(2), 685–709 (1983)

    Article  MathSciNet  Google Scholar 

  7. Gerhardt, G.: Flow of nonconvex hypersurfaces into spheres. J. Differential Geom., 32(1), 299–314 (1990)

    Article  MathSciNet  Google Scholar 

  8. Gerhardt, G.: Curvature Problems, Series in Geometry and Topology, Vol. 39, International Press, Somerville, MA, 2006

    MATH  Google Scholar 

  9. Gerhardt, G.: Inverse curvature flows in hyperbolic space. J. Differential Geom., 89(3), 487–527 (2011)

    Article  MathSciNet  Google Scholar 

  10. Gerhardt, G.: Non-scale-invariant inverse curvature flows in Euclidean space. Calc. Var. Partial Differential Equations, 49(1–2), 471–489 (2014)

    Article  MathSciNet  Google Scholar 

  11. Gerhardt, G.: Curvature flows in the sphere. J. Differential Geom., 100(2), 301–347 (2015)

    Article  MathSciNet  Google Scholar 

  12. Guan, P., Li, J.: The quermassintegral inequalities for k-convex starshaped domains. Adv. Math., 221, 1725–1732 (2009)

    Article  MathSciNet  Google Scholar 

  13. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differential Geom., 20(1), 237–266 (1984)

    Article  MathSciNet  Google Scholar 

  14. Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differential Geom., 59, 353–438 (2001)

    Article  MathSciNet  Google Scholar 

  15. Kröner, H., Scheuer, J.: Expansion of pinched hypersurfaces of the Euclidean and hyperbolic space by high powers of curvature. Math. Nachr., 292(7), 1514–1529 (2019)

    Article  MathSciNet  Google Scholar 

  16. Krylov, N. V.: Boundedly inhomogeneous elliptic and parabolic equations (Russian). Izv. Akad. Nauk SSSR Ser. Mat., 46(3), 487–523, 670 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Li, Q. R.: Surfaces expanding by the power of the Gauss curvature flow. Proc. Amer. Math. Soc., 138(11), 4089–4102 (2010)

    Article  MathSciNet  Google Scholar 

  18. Li, H., Wang, X., Wei, Y.: Surfaces expanding by non-concave curvature functions. Ann. Global Anal. Geom., 55(2), 243–279 (2019)

    Article  MathSciNet  Google Scholar 

  19. Lieberman, G. M.: Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996

    Book  Google Scholar 

  20. Makowski, M., Scheuer, J.: Rigidity results, inverse curvature flows and Alexandrov-Fenchel type inequalities in the sphere. Asian J. Math., 20(5), 869–892 (2017)

    Article  MathSciNet  Google Scholar 

  21. McCoy, J. A., Mofarreh, F. Y. Y., Wheeler, V. M.: Fully nonlinear curvature flow of axially symmetric hypersurfaces, Nonlinear Differ. Equ. Appl., 22, 325–343 (2015)

    Article  MathSciNet  Google Scholar 

  22. Scheuer, J.: Gradient estimates for inverse curvature flows in hyperbolic space. Geometric Flows, 1(1), 11–16 (2015)

    Article  MathSciNet  Google Scholar 

  23. Scheuer, J.: Non-scale-invariant inverse curvature flows in hyperbolic space. Calc. Var. Partial Differential Equations, 53(1–2), 91–123 (2015)

    Article  MathSciNet  Google Scholar 

  24. Schnürer, O. C.: Surfaces expanding by the inverse Gauß curvature flow. J. Reine Angew. Math., 600, 117–134 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Urbas, J. I. E.: On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures. Math. Z., 205, 355–372 (1990)

    Article  MathSciNet  Google Scholar 

  26. Urbas, J. I. E.: An expansion of convex hypersurfaces. J. Differential Geom., 33(1), 91–125 (1991)

    Article  MathSciNet  Google Scholar 

  27. Wei, Y.: New pinching estimates for inverse curvature flows in space forms. J. Geom. Anal., 29(2), 1555–1570 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for his/her helpful commments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wei.

Additional information

Supported by the National Key R and D Program of China (Grant No. 2020YFA0713100), National Natural Science Foundation of China (Grant Nos. 11971244 and 11871283), Natural Science Foundation of Tianjin, China (Grant No. 19JCQNJC14300), and Research (Grant No. KY0010000052) from University of Science and Technology of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y.H., Wang, X.F. & Wei, Y. Inverse Curvature Flows of Rotation Hypersurfaces. Acta. Math. Sin.-English Ser. 37, 1692–1708 (2021). https://doi.org/10.1007/s10114-021-0015-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-021-0015-4

Keywords

MR(2010) Subject Classification

Navigation