Skip to main content
Log in

Inference for Spatial Autoregressive Models with Infinite Variance Noises

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

A self-weighted quantile procedure is proposed to study the inference for a spatial unilateral autoregressive model with independent and identically distributed innovations belonging to the domain of attraction of a stable law with index of stability α, α ∈ (0, 2]. It is shown that when the model is stationary, the self-weighted quantile estimate of the parameter has a closed form and converges to a normal limiting distribution, which avoids the difficulty of Roknossadati and Zarepour (2010) in deriving their limiting distribution for an M-estimate. On the contrary, we show that when the model is not stationary, the proposed estimates have the same limiting distributions as those of Roknossadati and Zarepour. Furthermore, a Wald test statistic is proposed to consider the test for a linear restriction on the parameter, and it is shown that under a local alternative, the Wald statistic has a non-central chisquared distribution. Simulations and a real data example are also reported to assess the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basu, S., Reinsel, G. C.: A note on properties of spatial Yule—Walker estimators. J. Stat. Comptu. Sim., 41, 243–255 (1992)

    Article  MathSciNet  Google Scholar 

  2. Basu, S., Reinsel, G. C.: Properties of the spatial unilateral first-order ARMA model. Adv. Appl. Probab., 25, 631–648 (1993)

    Article  MathSciNet  Google Scholar 

  3. Basu, S., Reinsel, G. C.: Regression models with spatially correlated errors. J. Am,. Stat. Assoc., 89, 88–99 (1994)

    Article  Google Scholar 

  4. Basu, S., Jansen, D. W.: The geographic distribution of unemployment rates in the U.S.: A spatial-time series analysis. J. Econometrics, 36, 251–279 (1987)

    Article  Google Scholar 

  5. Bester, C. A., Conley T. G., Hansen, C. B.: Inference with dependent data using cluster covariance estimators. J. Econometrics, 165, 137–151 (2011)

    Article  MathSciNet  Google Scholar 

  6. Bester, C. A., Conley, T. G., Hansen, C. B., et al.: Fixed-b asymptotics for spatially dependent robust nonparametric covariance matrix estimators. Economet. Theor., 32, 154–186 (2016)

    Article  MathSciNet  Google Scholar 

  7. Bhattacharyya, B. B., Khalil, T. M., Richardson, G. D.: Gauss-Newton estimation of parameters for a spatial autoregression model. Stat. Probabil. Lett., 28, 173–179 (1996)

    Article  MathSciNet  Google Scholar 

  8. Bhattacharyya, B. B., Richardson, G., Zhang, J.: Parameter estimation in a nonstationary spatial autoregression model. Int. J. Pure Appl. Math., 15, 449–462 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Bickel, P. J., Wichura, M. J.: Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Statist., 42, 1656–1670 (1971)

    Article  MathSciNet  Google Scholar 

  10. Brockwell, P. J., Davis, R. A.: Time Series: Theory and Methods, 2nd edn., Springer, New York, 1996

    MATH  Google Scholar 

  11. Chan, N. H., Peng, L., Qi, Y. C.: Quantile inference for near-integerated autoregressive time series with infinite variance, Stat. Sinica, 16, 15–28 (2006)

    MATH  Google Scholar 

  12. Conley, T. G., Molinari, F.: Spatial correlation robust inference with imperfect distance information. J. Econometrics, 140, 76–96 (2007)

    Article  MathSciNet  Google Scholar 

  13. Dass, S. C., Nair, V. N.: Edge detection, spatial smoothing, and image reconstruction with partially observed multivariate data. J. Am. Stat. Assoc., 98, 77–89 (2003)

    Article  MathSciNet  Google Scholar 

  14. Davis, R. A., Knight, K., Liu, J.: M-estimation for autoregressions with infinite variance. Stoch. Processes Appl., 40, 145–180 (1992)

    Article  MathSciNet  Google Scholar 

  15. Feller, W.: An Introduction to Probability Theory and Its Application, Wiley, New York, 1971

    MATH  Google Scholar 

  16. Gutenbrunner, C., Jureckova, J.: Regression rank scores and regression quantile. Ann. Statist., 20, 305–330 (1992)

    Article  MathSciNet  Google Scholar 

  17. Hallin, M., Jurečková, J.: Optimal tests for autoregressive models based on autoregression rank scores. Ann. Statist., 27, 1385–1414 (1999)

    Article  MathSciNet  Google Scholar 

  18. Hasan, M. N., Koenker, R. W.: Robust rank tests of the unit root hypothesis. Econometrica, 65, 133–161 (1997)

    Article  MathSciNet  Google Scholar 

  19. Hercé, M.: Asymptotic theory of LAD estimation in a unit root process with finite variance errors. E-conomet. Theor., 12, 129–153 (1996)

    Article  MathSciNet  Google Scholar 

  20. Huber, P. J.: Robust Statistical Procedures, Society for Industrial and Applied Mathematics, Philadelphia, 1977

    MATH  Google Scholar 

  21. Kempton, R. A., Howes, C. W.: The use of neighbouring plot values in the analysis of variety trials. J. R. Stat. Soc. C., 30, 59–70 (1981)

    Google Scholar 

  22. Knight, K.: Limit theory for autoregressive-parameter estimates in an infinite-variance random walk. Can. J. Stat., 17, 261–278 (1989)

    Article  MathSciNet  Google Scholar 

  23. Knight, K.: Limiting distribution for L1 regression estimators under general conditions. Ann. Statist., 26, 755–770 (1998)

    Article  MathSciNet  Google Scholar 

  24. Koenker, R., Bassett, G: Regression quantiles. Econometrica., 46, 33–50 (1978)

    Article  MathSciNet  Google Scholar 

  25. Koenker, R., Xiao, Z. J.: Quantile autoregression. J. Am. Stat. Assoc., 101, 980–990 (2006)

    Article  MathSciNet  Google Scholar 

  26. Koul, H. L., and Saleh, A. K.: Autoregression quantiles and related rank-scores processes. Ann. Statist., 23, 670–689 (1995)

    Article  MathSciNet  Google Scholar 

  27. Lepage, R., Woodroofe, M., Zinn, J.: Convergence to a stable distribution via order statistics. Ann. Probab., 9, 624–632 (1981).

    Article  MathSciNet  Google Scholar 

  28. Martin, R. J.: A subclass of lattice processes applied to a problem in planar sampling. Biometrika, 66, 209–217 (1979)

    Article  MathSciNet  Google Scholar 

  29. Pollard, D.: Convergence of Stochastic Processes, Springer, New York, 1984

    Book  Google Scholar 

  30. Pollard, D.: Asymptotics for least absolute deviation regression estimators. Econometr. Theor., 7, 186–199 (1991)

    Article  MathSciNet  Google Scholar 

  31. Portnoy, S.: Tightness of the Sequence of Empiric c.d.f. Processes Defined from Regression Fractiles, In: Robust and Nonlinear Time Series Analysis, 231–246, Springer, New York, 1984

    Chapter  Google Scholar 

  32. Resnick, S. I.: Point processes, regular variation and weak convergence. Adv. Appl. Probab., 18, 66–138 (1986)

    Article  MathSciNet  Google Scholar 

  33. Resnick, S. I.: Extreme Values, Regular Variation, and Point Processes, Springer, New York, 1987

    Book  Google Scholar 

  34. Resnick, S. I., Greenwood, P.: A bivariate stable characterization and domains of Attraction. J. Multiv. Anal., 9, 206–221 (1979)

    Article  MathSciNet  Google Scholar 

  35. Roknossadati, S. M., Zarepour, M.: M-estimation for a spatial unilateral autoregressive model with infinite variance innovations. Economet. Theor., 26, 1663–1682 (2010)

    Article  MathSciNet  Google Scholar 

  36. Tjøstheim, D.: Statistical spatial series modelling. Adv. Appl. Probab., 10, 130–154 (1978)

    Article  MathSciNet  Google Scholar 

  37. Wang, H., Iglesias, E. M., Wooldridge, J. M.: Partial maximum likelihood estimation of spatial probit models. J. Econometrics, 172, 77–89 (2013)

    Article  MathSciNet  Google Scholar 

  38. Weiss, A. A.: Estimating nonlinear dynamic models using least absolute error estimation. Economet. Theor., 7, 46–68 (1991)

    Article  MathSciNet  Google Scholar 

  39. Zarepour, M., Roknossadati, S. M.s: Multivariate autoregression of order one with infinite variance innovations. Economet. Theor., 24, 677–695 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the Editor, the Co-Editor, and the anonymous referees for their critical comments and thoughtful suggestions, which lead to a much improved version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Meng Liu.

Additional information

Supported by NSFC (Grant Nos. 11771390 and 11371318), Zhejiang Provincial Natural Science Foundation of China (Grant No. LR16A010001) and the Fundamental Research Funds for the Central Universities 1) Corresponding author

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, G.L., Liu, Q.M. & Zhang, R.M. Inference for Spatial Autoregressive Models with Infinite Variance Noises. Acta. Math. Sin.-English Ser. 36, 1395–1416 (2020). https://doi.org/10.1007/s10114-020-9428-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-020-9428-8

k]Keywords

MR(2010) Subject Classification

Navigation