Skip to main content
Log in

Quantitative Absolute Continuity of Harmonic Measure and the Dirichlet Problem: A Survey of Recent Progress

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

It is a well-known folklore result that quantitative, scale invariant absolute continuity (more precisely, the weak-A property) of harmonic measure with respect to surface measure, on the bound¬ary of an open set Ω ⊂ ℝn+1 with Ahlfors-David regular boundary, is equivalent to the solvability of the Dirichlet problem in Ω, with data in Lp( Ω) for some p < ∞. Drawing an analogy to the famous Wiener criterion, which characterizes the domains in which the classical Dirichlet problem, with contin¬uous boundary data, can be solved, one may seek to characterize the open sets for which Lp solvability holds, thus allowing for singular boundary data.

It has been known for some time that absolute continuity of harmonic measure is closely tied to rectifiability properties of Ω, but also that rectifiability alone is not sufficient to guarantee absolute continuity. In this note, we survey recent progress in this area, culminating in a geometric charac¬terization of the weak-A property, and hence of solvability of the Lp Dirichlet problem for some finite p. This characterization, obtained under rather optimal background hypotheses, follows from a combination of the present author’s joint work with Martell, and the work of Azzam, Mourgoglou and Tolsa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aikawa, H.: Boundary Harnack principle and Martin boundary for a uniform domain. J. Math. Soc. Japan, 53(1), 119145.6 (2001)

    Google Scholar 

  2. Aikawa, H.: Potential theoretic characterizations of nonsmooth domains. Bull. London Math. Soc., 36, 469–482 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aikawa, H., Hirata, K.: Doubling conditions for harmonic measure in John domains. Ann. Inst. Fourier (Grenoble), 58(2), 429–445 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Akman, M., Azzam, J., Mourgoglou, M.: Absolute continuity of harmonic measure for domains with lower regular boundaries, preprint, arXiv: 1605.07291

  5. Akman, M., Bortz, S., Hofmann, S., et al.: Rectifiability, interior approximation and Harmonic Measure, preprint, arXiv: 1601.08251

  6. Alt, H., Caffarelli, L.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math., 325, 105–144 (1981)

    MathSciNet  MATH  Google Scholar 

  7. Alt, H. W., Caffarelli, L. A., Friedman, A.: Variational problems with two phases and their free boundaries. Trans. Amer. Math. Soc., 282(2), 431–461 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Azzam, J.: Semi-uniform domains and a characterization of the A property for harmonic measure, preprint, arXiv: 1711.03088

  9. Azzam, J., Garnett, J., Mourgoglou, M., et al.: Uniform rectifiability, elliptic measure, square functions, and ϵ-approximability via an ACF monotonicity formula. Preprint 2016. arXiv: 1612.02650

  10. Azzam, J., Hofmann, S., Martell, J. M., et al.: Volberg rectifiability of harmonic measure. GAFA, 26, 703–728 (2016)

    MATH  Google Scholar 

  11. Azzam, J., Mourgoglou, M., Tolsa, X.: Singular sets for harmonic measure on locally flat domains with locally finite surface measure. Int. Math. Res. Not. IMRN, 2017(12), 3751–3773 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Azzam, J., Mourgoglou, M., Tolsa, X.: Harmonic measure and quantitative connectivity: geometric characterization of the L p-solvability of the Dirichlet problem. Part II, preprint, arXiv: 1803.07975

  13. Badger, M.: Null sets of harmonic measure on NTA domains: Lipschitz approximation revisited. Math. Z., 270(1–2), 241–262 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bennewitz, B., Lewis, J. L.: On weak reverse H¨older inequalities for nondoubling harmonic measures. Complex Var. Theory Appl., 49(7–9), 571–582 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Bishop, C., Jones, P.: Harmonic measure and arclength. Ann. of Math. (2), 132, 511–547 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bortz, S., Hofmann, S.: Quantitative Fatou Theorems and uniform rectifiability, preprint, arXiv: 1801.01371, to appear in Potential Analysis

  17. Bourgain, J.: On the Hausdorff dimension of harmonic measure in higher dimensions. Invent. Math., 87, 477–483 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Christ, M.: A T(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math., LX/LXI, 601–628 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Coifman, R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Studia Math., 51, 241–250 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dahlberg, B.: On estimates for harmonic measure. Arch. Rat. Mech. Analysis, 65, 272–288 (1977)

    Article  MathSciNet  Google Scholar 

  21. David, G.: Morceaux de graphes lipschitziens et intégrales singulières sur une surface. (French) [Pieces of Lipschitz graphs and singular integrals on a surface]. Rev. Mat. Iberoamericana, 4(1), 73–114 (1988)

    Article  MathSciNet  Google Scholar 

  22. David, G., Jerison, D.: Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals. Indiana Univ. Math. J., 39(3), 831–845 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. David, G., Semmes, S.: Singular integrals and rectifiable sets in ℝn: Beyond Lipschitz graphs. Asterisque, 193, (1991)

  24. David, G., Semmes, S.: Analysis of and on Uniformly Rectifiable Sets, Mathematical Monographs and Surveys. 38, AMS, Providence, RI, 1993

    Book  MATH  Google Scholar 

  25. Garnett, J., Mourgoglou, M., Tolsa, X.: Uniform rectifiability from Carleson measure estimates and ε-approximability of bounded harmonic functions. Duke Math. J., 167(8), 1473–1524 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Heinonen, J., Kilpel¨ainen, T., Martio, O.: Nonlinear potential theory of degenerate elliptic equations. Dover (Rev. ed.), 2006

    Google Scholar 

  27. Hofmann, S., Le, P.: BMO solvability and absolute continuity of harmonic measure. J. Geom. Anal, https://doi.org

  28. Hofmann, S., Le, P., Martell, J. M.: The weak-A property of harmonic and p-harmonic measures implies uniform rectifiability. Anal. PDE., 10(3), 513–558 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hofmann, S., Martell, J. M.: Uniform rectifiability and harmonic measure IV: Ahlfors regularity plus Poisson kernels in L p implies uniform rectifiability, preprint, arXiv: 1505.06499

  30. Hofmann, S., Martell, J. M.: Harmonic measure and quantitative connectivity: geometric characterization of the L p-solvability of the Dirichlet problem, Part I, preprint, arXiv: 1712.03696v3

  31. Hofmann, S., Martell, J. M., Mayboroda, S.: Uniform rectifiability, Carleson measure estimates, and approximation of harmonic functions. Duke Math. J., 165(12), 2331–2389 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hofmann, S., Martell, J. M., Mayboroda, S., et al.: Uniform rectifiability and elliptic operators with small Carleson norm, preprint, arXiv: 1710.06157

  33. Hofmann, S., Martell, J. M., Toro, T.: A implies NTA for a class of variable coefficient elliptic operators. J. Differential Equations, 263(10), 6147–6188 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jerison, D.: Regularity of the Poisson kernel and free boundary problems. Colloquium Mathematicum, LX/LXI, 547–567 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jerison, D., Kenig, C.: Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. in Math., 46(1), 80–147 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kenig, C.: Harmonic analysis techniques for second order elliptic boundary value problems, CBMS Regional Conference Series in Mathematics, 83. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1994

    Book  Google Scholar 

  37. Kenig, C., Toro, T.: Poisson kernel characterizations of Reifenberg flat chord arc domains. Ann. Sci. Ecole Norm. Sup. (4), 36(3), 323–401 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lavrentiev, M.: Boundary problems in the theory of univalent functions (Russian). Math Sb., 43, 815–846 (1936), AMS Transl. Series 2, 32, 1–35 (1963)

    Google Scholar 

  39. Lewis, J. L., Vogel, A.: Symmetry theorems and uniform rectifiability. Boundary Value Problems, 2007, (2007), article ID 030190, 59 pages

  40. Mattila, P., Melnikov, M., Verdera, J.: The Cauchy integral, analytic capacity, and uniform rectifiability. Ann. of Math. (2), 144(1), 127–136 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mourgoglou, M., Tolsa, X.: Harmonic measure and Riesz transform in uniform and general domains. J. Reine Angew. Math., to appear

  42. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc., 165, 207–226 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nazarov, F., Tolsa, X., Volberg, A.: On the uniform rectifiability of ad-regular measures with bounded Riesz transform operator: The case of codimension 1. Acta Math., 213(2), 237–321 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Riesz, F. and Riesz, M.: Über die randwerte einer analtischen funktion, Compte Rendues du Quatrième Congrès des Mathématiciens Scandinaves, Stockholm 1916, Almqvists and Wilksels, Uppsala, 1920

    Google Scholar 

  45. Semmes, S.: A criterion for the boundedness of singular integrals on hypersurfaces. Trans. Amer. Math. Soc., 311, 501–513 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Hofmann.

Additional information

Dedicated to Prof. Carlos Kenig on the occasion of his 65th birthday

The author is supported by NSF (Grant No. DMS-1664047), the author was supported by NSF (Grant No. DMS-1440140)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, S. Quantitative Absolute Continuity of Harmonic Measure and the Dirichlet Problem: A Survey of Recent Progress. Acta. Math. Sin.-English Ser. 35, 1011–1026 (2019). https://doi.org/10.1007/s10114-019-8444-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-019-8444-z

Keywords

MR(2010) Subject Classification

Navigation