Skip to main content
Log in

The Two Hyperplane Conjecture

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

We introduce a conjecture that we call the Two Hyperplane Conjecture, saying that an isoperimetric surface that divides a convex body in half by volume is trapped between parallel hy-perplanes. The conjecture is motivated by an approach we propose to the Hots Spots Conjecture of J. Rauch using deformation and hipschitz bounds for level sets of eigenfunctions. We will relate this approach to quantitative connectivity properties of level sets of solutions to elliptic variational problems, including isoperimetric inequalities, Poincare inequalities, Harnack inequalities, and NTA (non-tangentially accessibility). This paper mostly asks questions rather than answering them, while recasting known results in a new light. Its main theme is that the level sets of least energy solutions to scalar variational problems should be as simple as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilera, N. E., Caffarelli, L. A., Spruck, J.: An optimization problem in heat conduction. Ann. Scuola Norm. Sup. Pisa CI. Sc. (4), 14, 355–387 (1988)

    MathSciNet  MATH  Google Scholar 

  2. Alt, H. W., Caffarelli, L. A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math., 325, 105–144 (1981)

    MathSciNet  MATH  Google Scholar 

  3. Atar, R., Burdzy, K.: On Neumann eigenfunctions in lip domains. J. Amer. Math. Soc., 17(2), 243–265 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bobkov, S.: Extremal properties of half-spaces for log-concave distributions. Ann. Probab., 24(1), 35–48 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bombieri, E., Giusti, E.: Harnack's Inequality for elliptic differential equations on minimal surfaces. Inv. Math., 15, 24–46 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bombieri, E., De Giorgi, E., Miranda, M.: Una maggiorazione a priori relativa alle ipersuperfice minimali nonparametriche, (Italian). Arch. Rational Mech. Anal, 32, 255–267 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borell, C.: The Brunn-Minkowski inequality in Gauss space. Invent. Math., 30(2), 207–216 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burdzy, K.: The hot spots problem in planar domains with one hole. Duke Math. J., 129(3), 481–502 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caffarelli, L. A., Salsa, S.: A Geometric Approach to Eree Boundary Problems, Graduate Studies in Mathematics, 68, American Mathematical Society, Providence, RI, 2005

    Google Scholar 

  10. David, G., Semmes, S.: Quantitative rectifiability and Lipschitz mappings. Trans. A. M. S., 337, 855–889 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. David, G., Semmes, S.: Quasiminimal surfaces of codimension 1 and John domains. Pac. J. of Math., 183(2), 213–277 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Silva, D.: Existence and regularity of monotone solutions to free boundary problems. American J. of Math., 131(2), 351–378 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. De Silva, D., Jerison, D.: A gradient bound for free boundary graphs. Coram. Pure Appl. Math., 64(4), 538–555 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Boston-Basel-Stuttgart, 1984

    Book  Google Scholar 

  15. Gromov, M.: Paul Lévy's Isoperimetric Inequality, Preprint IHES/M/80/320, Inst. Hautes Etud. Sci. Bures-sur-Yvette, 1980

    Google Scholar 

  16. Jerison, D. S., Kenig, C. E.: Boundary behavior of harmonic functions in nontangentially accessible domains. Advances in Math., 46(1), 80–147 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jerison, D., Nadirashvili, N.: The “hot spots” conjecture for domains with two axes of symmetry. J. Amer. Math. Soc., 13(4), 741–772 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Judge, C., Mondal, S.: Euclidean triangles have no hot spots, Preprint 2018, arXiv:1802.01800v2

    Google Scholar 

  19. Klartag, B.: A Berry—Essen type inequality for convex bodies with unconditional basis. Probab. Theory Relat. Fields, 145, 1–33 (2009)

    Article  MATH  Google Scholar 

  20. Kolesnikov, A. V., Zhdanov, R. I.: On isoperimetric sets of radially symmetric measures. In Concentration, Functional Inequalities and Isoperimetry, 123–154, Contemp. Math., 545, Amer. Math. Soc., Providence, RI, 2011

    Chapter  Google Scholar 

  21. Milman, E.: On the role of convexity in isoperimetry, spectral-gap and concentration. Invent. Math., 177(1), 1–43 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Milman, E.: Isoperimetric and concentration inequalities — equivalence under curvature lower bound. Duke Math. J., 154(2), 207–239, 2010

    Article  MathSciNet  MATH  Google Scholar 

  23. Milman, E.: Isoperimetric bounds on convex manifolds. In C. Houdre, M. Ledoux, E. Milman, and M. Milman, editors, Concentration, Functional Inequalities and Isoperimetry, volume 545 of Contemporary Mathematics, pages 195–208. Amer. Math. Soc., 2011

    Chapter  Google Scholar 

  24. Milman, E.: personal communication

  25. Modica, L.: The gradient of phase transitions and the minimal interface criterion. Arch. Rat. Mech. Anal, 98(2), 123–142 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Modica, L., Mortola, S.: Il limite nella Г-convergenza di una famiglia di funzionali ellittici (Italian). Boll. Un. Mat. Ital. A (5), 14(3), 526–529 (1977)

    MathSciNet  MATH  Google Scholar 

  27. Rauch, J.: Five problems: an introduction to the qualitative theory of partial differential equations. In Partial Differential Equations and Related Topics (Program, Tulane Univ., New Orleans, La., 1974) pp. 355–369. Lecture Notes in Math. 446, Springer, Berlin, 1975

    Chapter  Google Scholar 

  28. Rosales, C., Cañete, A., Bayle, V., et al.: On the isoperimetric problem in Euclidean space with density. Galc. Var. Part. Differ. Equat., 31(1), 27–46 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sternberg, P., Zumbrun, K.: Connectivity of phase boundaries in strictly convex domains. Arch. Rat. Mech. Anal., 141, 375–400 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sternberg, P., Zumbrun, K.: On the connectivity of boundaries of sets minimizing perimeter subject to a volume constraint. Coram. Anal. Georn,., 7, 199–220 (1999)

    MathSciNet  MATH  Google Scholar 

  31. Sternberg, P., Zumbrun, K.: A Poincaré inequality with applications to volume-constrained area-minimizing surfaces. J. Reine Angew. Math., 503, 63–85 (1998)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Jerison.

Additional information

Dedicated to Carlos Kenig on his 65th birthday with great affection

Supported in part by NSF (Grant No. DMS 1500771), a Simons Fellowship, and the Simons Foundation (Grant No. 601948 DJ)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jerison, D. The Two Hyperplane Conjecture. Acta. Math. Sin.-English Ser. 35, 728–748 (2019). https://doi.org/10.1007/s10114-019-8241-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-019-8241-8

Keywords

MR(2010) Subject Classification

Navigation