Advertisement

Acta Mathematica Sinica, English Series

, Volume 35, Issue 7, pp 1227–1237 | Cite as

A Toughness Condition for Fractional (k, m)-deleted Graphs Revisited

  • Wei Gao
  • Juan L. G. GuiraoEmail author
  • Yao Jun Chen
Article
  • 14 Downloads

Abstract

In computer networks, toughness is an important parameter which is used to measure the vulnerability of the network. Zhou et al. obtains a toughness condition for a graph to be fractional (k, m)-deleted and presents an example to show the sharpness of the toughness bound. In this paper, we remark that the previous example does not work and inspired by this fact, we present a new toughness condition for fractional (k, m)-deleted graphs improving the existing one. Finally, we state an open problem.

Keywords

Graph fractional factor fractional (k, m)-deleted graph toughness 

MR(2010) Subject Classification

05C70 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ashwin, P., Postlethwaite, C.: On designing heteroclinic networks from graphs. Physica D, 265, 26–39 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Basavanagoud, B., Desai, V. R., Patil, S.: (β, α)-Connectivity index of graphs. Applied Mathematics and Nonlinear Sciences, 2, 21–30 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Bondy, J. A., Mutry, U. S. R.: Graph Theory, Springer, Berlin, 2008CrossRefGoogle Scholar
  4. [4]
    Chvátal, V.: Tough graphs and hamiltonian circuits. Discrete Math., 5, 215–228 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Crouzeilles, R., Lorini, M. L., Grelle, C. E. D.: Applying graph theory to design networks of protected areas: using inter-patch distance for regional conservation planning. Nat. Conservacao, 9, 219–224 (2011)CrossRefGoogle Scholar
  6. [6]
    de Araujo, D. R. B., Martins, J. F., Bastos, C. J. A.: New graph model to design optical networks. IEEE Commun. Lett., 19, 2130–2133 (2015)CrossRefGoogle Scholar
  7. [7]
    Fardad, M., Lin, F., Jovanovic, M. R.: Design of optimal sparse interconnection graphs for synchronization of oscillator networks. IEEE T. Automat. Contr., 59, 2457–2462 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Gao, W., Guo, Y., Wang, K. Y.: Ontology algorithm using singular value decomposition and applied in multidisciplinary. Cluster Comput., 19, 2201–2210 (2016)CrossRefGoogle Scholar
  9. [9]
    Gao, W., Wang, W. F.: New isolated toughness condition for fractional (g, f, n)-critical graphs. Colloq. Math., 147, 55–66 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Gao, W., Wang, W. F.: The eccentric connectivity polynomial of two classes of nanotubes. Chaos Soliton & Fractals, 89, 290–294 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Gao, W., Wang, W. F.: The fifth geometric arithmetic index of bridge graph and carbon nanocones. J. Differ. Equ. Appl., 23(1–2), 100–109 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Gao, W., Wang, W. F.: Degree conditions for fractional (k, m)-deleted graphs. Ars Combin., 113A, 273–285 (2014)MathSciNetzbMATHGoogle Scholar
  13. [13]
    Gao, W., Wang, W. F.: A neighborhood union condition for fractional (k, m)-deleted graphs. Ars Combin., 113A, 225–233 (2014)MathSciNetzbMATHGoogle Scholar
  14. [14]
    Guirao, J. L. G., Luo, A. C. J.: New trends in nonlinear dynamics and chaoticity. Nonlinear Dynam., 84, 1–2 (2016)MathSciNetCrossRefGoogle Scholar
  15. [15]
    Haenggi, M., Andrews, J., Baccelli, F., et al.: Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE J. Sel. Area. Comm., 27, 1025–1028 (2009)CrossRefGoogle Scholar
  16. [16]
    Jin, J. H.: Multiple solutions of the Kirchhoff-type problem in R N. Appl. Math. Nonl. Sc., 1, 229–238 (2016)zbMATHGoogle Scholar
  17. [17]
    Lanzeni, S., Messina, E., Archetti, F.: Graph models and mathematical programming in biochemical network analysis and metabolic engineering design. Comput. Math. Appl., 55, 970–983 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Liu, G. Z., Zhang, L. J.: Toughness and the existence of fractional k-factors of graphs. Discrete Math., 308, 1741–1748 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Pishvaee, M. S., Rabbani, M.: A graph theoretic-based heuristic algorithm for responsive supply chain network design with direct and indirect shipment. Adv. Eng. Softw., 42, 57–63 (2011)CrossRefzbMATHGoogle Scholar
  20. [20]
    Possani, V. N., Callegaro, V., Reis, A. I., et al.: Graph-based transistor network generation method for supergate design. IEEE T. VLSI Syst., 24, 692–705 (2016)CrossRefGoogle Scholar
  21. [21]
    Rahimi, M., Haghighi, A.: A graph portioning approach for hydraulic analysis-design of looped pipe networks. Water Resour. Manag., 29, 5339–5352 (2015)CrossRefGoogle Scholar
  22. [22]
    Rizzelli, G., Tornatore, M., Maier, G., et al.: Impairment-aware design of translucent DWDM networks based on the k-path connectivity graph. J. Opt. Commun. Netw., 4, 356–365 (2012)CrossRefGoogle Scholar
  23. [23]
    Zhou, S.: A neighborhood condition for graphs to be fractional (k, m)-deleted graphs. Glasg. Math. J., 52(1), (2010) 33–40.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    Zhou, S. Z., Sun, Z. R., Ye, H.: A toughness condition for fractional (k, m)-deleted graphs. Inform. Process. Lett., 113, 255–259 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Zhou, S. Z., Xu, L., Xu, Y.: A sufficient condition for the existence of a k-factor excluding a given r-factor. Applied Mathematics and Nonlinear Sciences, 2, 13–20 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Zhou, S., Yang, F., Sun, Z. R.: A neighborhood condition for fractional ID-[a, b]-factor-critical graphs. Discussiones Mathematicae Graph Theory, 36(2), 409–418 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019

Authors and Affiliations

  1. 1.Department of MathematicsNanjing UniversityNanjingP. R. China
  2. 2.School of Information Science and TechnologyYunnan Normal UniversityKunmingP. R. China
  3. 3.Departamento de Matemática Aplicada y EstadísticaUniversidad Politécnica de Cartagena, Hospital de MarinaCartagena, Región de MurciaSpain

Personalised recommendations