Statistical Estimation of the Shannon Entropy
- 86 Downloads
- 1 Citations
Abstract
The behavior of the Kozachenko–Leonenko estimates for the (differential) Shannon entropy is studied when the number of i.i.d. vector-valued observations tends to infinity. The asymptotic unbiasedness and L2-consistency of the estimates are established. The conditions employed involve the analogues of the Hardy–Littlewood maximal function. It is shown that the results are valid in particular for the entropy estimation of any nondegenerate Gaussian vector.
Keywords
Shannon differential entropy Kozachenko–Leonenko estimates Hardy–Littlewood maximal function analogues asymptotic unbiasedness and L2-consistency Gaussian vectorsMR(2010) Subject Classification
60F25 62G20 62H12Preview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
The work is supported by the Russian Science Foundation under grant 14-21-00162 and performed at the Steklov Mathematical Institute of Russian Academy of Sciences. The authors are grateful to Professor E. Spodarev for drawing their attention to the entropy estimation problems.
References
- [1]Alonso–Ruiz, P., Spodarev, E.: Entropy–based inhomogeneity detection in porous media, arXiv:1611.02241Google Scholar
- [2]Balibrea, F.: On Clausius, Boltzmann and Shannon notions of entropy. Journal of Modern Physics, 7, 219–227 (2016)CrossRefGoogle Scholar
- [3]Beirlant, J., Dudewicz, E. J., Györfi, L., et al.: Nonparametric entropy estimation: An overview. International Journal of Mathematical and Statistical Sciences, 6, 17–39 (1997)MathSciNetzbMATHGoogle Scholar
- [4]Benguigui, L.: The different paths to entropy. European Journal of Physics, 34, 303–321 (2013)CrossRefzbMATHGoogle Scholar
- [5]Billingsley, P.: Convergence of Probability Measures (2nd ed.), J. Wiley and sons Inc., New York, 1999CrossRefzbMATHGoogle Scholar
- [6]Borkar, V. S.: Probability Theory. An Advanced Course, Springer–Verlag, New York, 1995CrossRefzbMATHGoogle Scholar
- [7]Charzyńska, A., Gambin, A.: Improvement of of the k–NN entropy estimator with applications in systems biology. Entropy, 18(1), 13 (2016)CrossRefGoogle Scholar
- [8]Delattre, S., Fournier, N.: On the Kozachenko–Leonenko entropy estimator. Journal of Statistical Planning and Inference, (2017), DOI: http://dx.doi.org/10.1016/j.jspi.2017.01.004 (accepted manuscript)Google Scholar
- [9]Evans, D.: A computationally efficient estimator for mutual information. Proc. R. Soc. A, 464, 1203–1215 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
- [10]Evans, D., Jones, A. J., Schmidt, W. M.: Asymptotic moments of near–neighbour distance distributions. Proc. R. Soc. A, 458, 2839–2849 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
- [11]Gorban, A. N., Gorban, P. A., Judge, G.: Entropy: the Markov ordering approach. Entropy, 12, 1145–1193 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- [12]Kallenberg, O.: Foundations of Modern Probability, Springer, New York, 1997zbMATHGoogle Scholar
- [13]Kozachenko, L. F., Leonenko, N. N.: Sample estimate of the entropy of a random vector. Problems of Information Transmission, 23(2), 90–16 (1987)zbMATHGoogle Scholar
- [14]Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys. Rev. E, 69:066138 (2004)CrossRefGoogle Scholar
- [15]Laurent, B.: Efficient estimation of integral functionals of a density. The Annals of Statistics, 24, 659–681 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
- [16]Leonenko, N. N., Pronzato, L., Savani, V.: A class of Rényi information estimations for multidimensional densities. The Annals of Statistics, 36, 2153–2182 (2008) Correction: The Annals of Statistics, 38, 3837–3838 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- [17]Ma, J., Sun, Z.: Mutual information is copula entropy. Tsinghua Science and Tech., 16(1), 51–54 (2011)CrossRefzbMATHGoogle Scholar
- [18]Miller, E. G.: A new class of entropy estimators for multidimensional densities. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP03), Hong Kong, China, 6–10 April 2003, 3, 297–300Google Scholar
- [19]Pál, D., Póczos, B., Szepesvári, C.: Estimation of Rényi entropy and mutual information based on generalized nearest–neighbor graphs. In: NIPS’10 Proceedings of the 23rd International Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada (December 06–09, 2010), 1849–1857Google Scholar
- [20]Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max–dependency, max–relevance, and min–redundancy. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27(8), 1226–1238 (2005)CrossRefGoogle Scholar
- [21]Shannon, C. E.: A mathematical theory of communication. Bell Systems Technical Journal, 27, July and October, 379–423 and 623–656 (1948)Google Scholar
- [22]Shiryaev, A. N.: Probability–1 (3rd ed.), Springer, New York, 2016zbMATHGoogle Scholar
- [23]Singh, S., Pószoc, B.: Nonparanormal information estimation. In: Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70, 3210–3219, 2017Google Scholar
- [24]Singh, S., Pószoc, B.: Analysis of k–nearest neighbor distances with application to entropy estimation, arXiv: 1603.08578v2Google Scholar
- [25]Sricharan, K., Wei, D., Hero, A. O.: Ensemble estimators for multivariate entropy estimation. IEEE Transactions on Information Theory, 59(7), 4374–4388 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- [26]Stowell, D., Plumbley, M. D.: Fast multidimensional entropy estimation by k–d partitioning. IEEE Signal Processing Letters, 16(6), (2009)CrossRefGoogle Scholar
- [27]Yeh, J.: Real Analysis: Theory of Measure and Integration (3rd edition), World Scientific, Singapore, 2014CrossRefzbMATHGoogle Scholar