Skip to main content
Log in

Analytic Fragmentation Semigroups and Classical Solutions to Coagulation–fragmentation Equations — a Survey

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In the paper we present a survey of recent results obtained by the author that concern discrete fragmentation–coagulation models with growth. Models like that are particularly important in mathematical biology and ecology where they describe the aggregation of living organisms. The main results discussed in the paper are the existence of classical semigroup solutions to the fragmentation–coagulation equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Bak., T. A.: Convergence to equilibrium in a system of reacting polymers. Comm. Math. Phys., 65(3), 203–230 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arendt, W., Rhandi, A.: Perturbation of positive semigroups. Arch. Math. (Basel), 56(2), 107–119 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ball, J. M., Carr., J.: The discrete coagulation–fragmentation equations: existence, uniqueness, and density conservation. J. Statist. Phys., 61(1–2), 203–234 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Banasiak, J.: Shattering and non–uniqueness in fragmentation models — an analytic approach. Phys. D, 222(1–2), 63–72 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Banasiak, J.: On an irregular dynamics of certain fragmentation semigroups. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 105(2), 361–377 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Banasiak, J.: Global classical solutions of coagulation–fragmentation equations with unbounded coagulation rates. Nonlinear Anal. Real World Appl., 13(1), 91–105 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Banasiak, J.: Transport processes with coagulation and strong fragmentation. Discrete Contin. Dyn. Syst. Ser. B, 17(2), 445–472 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Banasiak, J., Arlotti, L.: Perturbations of Positive Semigroups with Applications. Springer Monographs in Mathematics. Springer–Verlag London, Ltd., London, 2006

    MATH  Google Scholar 

  9. Banasiak, J., Lamb, W.: Coagulation, fragmentation and growth processes in a size structured population. Discrete Contin. Dyn. Syst. Ser. B, 11(3), 563–585 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Banasiak, J., Lamb, W.: Global strict solutions to continuous coagulation–fragmentation equations with strong fragmentation. Proc. Roy. Soc. Edinburgh Sect. A, 141(3), 465–480 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Banasiak, J., Lamb, W.: Analytic fragmentation semigroups and continuous coagulation–fragmentation equations with unbounded rates. J. Math. Anal. Appl., 391(1), 312–322 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Banasiak, J., Lamb, W.: The discrete fragmentation equation: semigroups, compactness and asynchronous exponential growth. Kinet. Relat. Models, 5(2), 223–236 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Banasiak, J., Lamb, W.: On the existence of moments of solutions to fragmentation equations. J. Math. Anal. Appl., 413(2), 1017–1029 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Banasiak, J., Lamb, W., Langer, M.: Strong fragmentation and coagulation with power–law rates. J. Engrg. Math., 82, 199–215 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Banasiak, J., Lamb, W., LaurenÇot, P.: Analytic Methods for CoagulationFragmentation Models. CRC Press, Boca Raton, 2018, to appear

    Google Scholar 

  16. Bertoin, J.: The asymptotic behavior of fragmentation processes. J. Eur. Math. Soc. (JEMS), 5(4), 395–416 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bertoin, J.: Random Fragmentation and Coagulation Processes, volume 102 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2006

    Book  Google Scholar 

  18. Blatz, P. J., Tobolsky, A. V.: Note on the kinetics of systems manifesting simultaneous polymerizationdepolymerization phenomena. Journal of Physical Chemistry, 49(2), 77–80 (1945)

    Article  Google Scholar 

  19. Carr, J.: Asymptotic behaviour of solutions to the coagulation–fragmentation equations. I. The strong fragmentation case. Proc. Roy. Soc. Edinburgh Sect. A, 121(3–4), 231–244 (1992)

    Article  MATH  Google Scholar 

  20. Carr, J., da Costa, F. P.: Instantaneous gelation in coagulation dynamics. Z. Angew. Math. Phys., 43(6), 974–983 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Carr, J., da Costa, F. P.: Asymptotic behavior of solutions to the coagulation–fragmentation equations. II. Weak fragmentation. J. Statist. Phys., 77(1–2), 89–123 (1994)

    MATH  Google Scholar 

  22. da Costa, F. P.: Existence and uniqueness of density conserving solutions to the coagulation–fragmentation equations with strong fragmentation. J. Math. Anal. Appl., 192(3), 892–914 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. da Costa, F. P.: A finite–dimensional dynamical model for gelation in coagulation processes. J. Nonlinear Sci., 8(6), 619–653 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Degond, P., Liu, J. G., Pego, R. L.: Coagulation–Fragmentation Model for Animal Group–Size Statistics. J. Nonlinear Sci., 27(2), 379–424 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Drake, R. L.: A general mathematical survey of the coagulation equation. In G. M. Hidy and J. R. Brock, editors, Topics in Current Aerosol Research, International Reviews in Aerosol Physics and Chemistry, Pergamon, 1972, 201–376

    Google Scholar 

  26. Drake, R. L., Wright, T. J.: The scalar transport equation of coalescence theory: New families of exact solutions. Journal of the Atmospheric Sciences, 29(3), 548–556 (1972)

    Article  MathSciNet  Google Scholar 

  27. Dubovskiĭ, P. B., Stewart, I. W.: Existence, uniqueness and mass conservation for the coagulationfragmentation equation. Math. Methods Appl. Sci., 19(7), 571–591 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Edwards, B. F., Cai, M., Han, H.: Rate equation and scaling for fragmentation with mass loss. Physical Review A, 41(10), 5755–5757 (1990)

    Article  Google Scholar 

  29. Engel, K. J., Nagel, R.: One–parameter Semigroups for Linear Evolution Equations, Volume 194 of Graduate Texts in Mathematics. Springer–Verlag, New York, 2000

    MATH  Google Scholar 

  30. Escobedo, M., LaurenÇot, P., Mischler, S., et al.: Gelation and mass conservation in coagulationfragmentation models. J. Differential Equations, 195(1), 143–174 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Filippov, A. F.: On the distribution of the sizes of particles which undergo splitting. Theory Probab. Appl., 6, 275–294 (1961)

    Article  MATH  Google Scholar 

  32. Fournier, N., Giet, J. S.: On small particles in coagulation–fragmentation equations. J. Statist. Phys., 111(5–6), 1299–1329 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Giri, A. K., Kumar, J., Warnecke, G.: The continuous coagulation equation with multiple fragmentation. J. Math. Anal. Appl., 374(1), 71–87 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Giri, A. K., LaurenÇot, P., Warnecke, G.: Weak solutions to the continuous coagulation equation with multiple fragmentation. Nonlinear Anal., 75(4), 2199–2208 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Giri, A. K., Warnecke, G.: Uniqueness for the coagulation–fragmentation equation with strong fragmentation. Z. Angew. Math. Phys., 62(6), 1047–1063 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Golovin, A. M.: The solution of the coagulation equation for cloud droplets in a rising air current. Izv. Geophys. Ser., 5, 482–487 (1963)

    Google Scholar 

  37. Gueron, S., Levin, S. A.: The dynamics of group formation. Mathematical Biosciences, 128(1), 243–264 (1995)

    Article  MATH  Google Scholar 

  38. Haas, B.: Loss of mass in deterministic and random fragmentations. Stochastic Process. Appl., 106(2), 245–277 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Haas, B.: Appearance of dust in fragmentations. Commun. Math. Sci., 2(suppl. 1), 65–73 (2004)

    Book  MATH  Google Scholar 

  40. Huang, J., Edwards, B. F., Levine, A. D.: General solutions and scaling violation for fragmentation with mass loss. Journal of Physics A: Mathematical and General, 24(16), 3967–3977 (1991)

    Article  Google Scholar 

  41. Jackson, G. A.: A model of the formation of marine algal flocs by physical coagulation processes. Deep Sea Research Part A. Oceanographic Research Papers, 37(8), 1197–1211 (1990)

    Article  Google Scholar 

  42. Jeon, I.: Stochastic fragmentation and some sufficient conditions for shattering transition. J. Korean Math. Soc., 39(4), 543–558 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kato, T.: On the semi–groups generated by Kolmogoroff’s differential equations. J. Math. Soc. Japan, 6, 1–15 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  44. LaurenÇot, P.: On a class of continuous coagulation–fragmentation equations. J. Differential Equations, 167(2), 245–274 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. LaurenÇot, P.: The discrete coagulation equations with multiple fragmentation. Proc. Edinb. Math. Soc. (2), 45(1), 67–82 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. LaurenÇot, P.: Weak Compactness Techniques and Coagulation Equations. In Evolutionary equations with applications in natural sciences, volume 2126 of Lecture Notes in Math., Springer, Cham, 2015, 199–253

    Book  MATH  Google Scholar 

  47. Leyvraz, F., Tschudi, H. R.: Singularities in the kinetics of coagulation processes. J. Phys. A, 14(12), 3389–3405 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lunardi, A.: Analytic semigroups and optimal regularity in parabolic problems, volume 16 of Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser Verlag, Basel, 1995

    Google Scholar 

  49. McBride, A. C., Smith, A. L., Lamb, W.: Strongly differentiable solutions of the discrete coagulationfragmentation equation. Phys. D, 239(15), 1436–1445 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. McGrady, E. D., Ziff, R. M.: “Shattering” transition in fragmentation. Phys. Rev. Lett., 58(9), 892–895 (1987)

    Article  MathSciNet  Google Scholar 

  51. McLaughlin, D. J., Lamb, W., McBride, A. C.: An existence and uniqueness result for a coagulation and multiple–fragmentation equation. SIAM J. Math. Anal., 28(5), 1173–1190 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  52. McLeod, J. B.: On the scalar transport equation. Proc. London Math. Soc. (3), 14, 445–458 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  53. Melzak, Z. A.: The effect of coalescence in certain collision processes. Quart. Appl. Math., XI(2), 231–234 (1953)

    Book  MATH  Google Scholar 

  54. Müller, H.: Zur allgemeinen theorie ser raschen koagulation. Fortschrittsberichte über Kolloide und Polymere, 27(6), 223–250 (1928)

    Google Scholar 

  55. Okubo, A., Levin, S. A.: Diffusion and ecological problems: modern perspectives, volume 14 of Interdisciplinary Applied Mathematics. Springer–Verlag, New York, second edition, 2001

    Book  Google Scholar 

  56. Pazy, A.: Semigroups of linear operators and applications to partial differential equations, volume 44 of Applied Mathematical Sciences. Springer–Verlag, New York, 1983

    Book  MATH  Google Scholar 

  57. Schumann, T. E. W.: Theoretical aspects of the size distribution of fog particles. Q. J. Roy. Meteorol. Soc., 66, 195–207 (1940)

    Article  Google Scholar 

  58. Scott, W. T.: Analytic studies of cloud droplet coalescence i. J. Atmos. Sci., 25, 54–65 (1968)

    Article  Google Scholar 

  59. Sell, G. R., You, Y.: Dynamics of evolutionary equations, volume 143. Springer Science & Business Media, 2013

    Google Scholar 

  60. Smith, A. L.: Mathematical analysis of discrete coagulation–fragmentation equations. PhD thesis, University of Strathclyde, 2011

    Google Scholar 

  61. Smith, A. L., Lamb, W., Langer, M., et al.: Discrete fragmentation with mass loss. J. Evol. Equ., 12(1), 181–201 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. Smoluchowski, M.: Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Zeitschrift fur Physik, 17, 557–585 (1916)

    Google Scholar 

  63. Smoluchowski, M.: Versuch einer mathematischen theorie der koagulationskinetik kolloider lösungen. Zeitschrift fuer physikalische Chemie, 92, 129–168 (2010)

    Google Scholar 

  64. Stewart, I. W.: A global existence theorem for the general coagulation–fragmentation equation with unbounded kernels. Math. Methods Appl. Sci., 11(5), 627–648 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  65. Triebel, H.: Interpolation theory, function spaces, differential operators. North–Holland Publishing Co., Amsterdam, 1978

    MATH  Google Scholar 

  66. Wagner, W.: Explosion phenomena in stochastic coagulation–fragmentation models. Ann. Appl. Probab., 15(3), 2081–2112 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  67. Ziff, R. M.: An explicit solution to a discrete fragmentation model. J. Phys. A, 25(9), 2569–2576 (1992)

    Article  MathSciNet  Google Scholar 

  68. Ziff, R. M., Ernst, M. H., Hendriks, E. M.: Kinetics of gelation and universality. J. Phys. A, 16(10), 2293–2320 (1983)

    Article  MathSciNet  Google Scholar 

  69. Ziff, R. M., McGrady, E. D.: The kinetics of cluster fragmentation and depolymerisation. J. Phys. A, 18(15), 3027–3037 (1985)

    Article  MathSciNet  Google Scholar 

  70. Ziff, R. M., McGrady, E. D.: Kinetics of polymer degradation. Macromolecules, 19(10), 2513–2519 (1986)

    Article  Google Scholar 

  71. Ziff, R. M., Stell, G.: Kinetics of polymer gelation. J. Chem. Phys., 73(7), 3492–3499 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Banasiak.

Additional information

Supported by National Research Foundation of South Africa (Grant No. 82770)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banasiak, J. Analytic Fragmentation Semigroups and Classical Solutions to Coagulation–fragmentation Equations — a Survey. Acta. Math. Sin.-English Ser. 35, 83–104 (2019). https://doi.org/10.1007/s10114-018-7435-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-018-7435-9

Keywords

MR(2010) Subject Classification

Navigation