Skip to main content
Log in

A Note on Time-Decay Estimates for the Compressible Navier–Stokes Equations

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In the recent work, we have developed a decay framework in general Lp critical spaces and established optimal time-decay estimates for barotropic compressible Navier–Stokes equations. Those decay rates of Lq-Lr type of the solution and its derivatives are available in the critical regularity framework, which were exactly firstly observed by Matsumura & Nishida, and subsequently generalized by Ponce for solutions with high Sobolev regularity. We would like to mention that our approach is likely to be effective for other hyperbolic/parabolic systems that are encountered in fluid mechanics or mathematical physics. In this paper, a new observation is involved in the high frequency, which enables us to improve decay exponents for the high frequencies of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J. Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343, Springer, Berlin, 2011

    Book  MATH  Google Scholar 

  2. Cannone, M.: A generalization of a theorem by Kato on Navier–Stokes equations. Rev. Mat. Iberoamericana, 13, 515–541 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Charve, F., Danchin, R.: A global existence result for the compressible Navier–Stokes equations in the critical L p framework. Arch. Rational Mech. Anal., 198, 233–271 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chemin, J. Y.: Théorèmes d’unicité pour le système de Navier–Stokes tridimensionnel. J. Anal. Math., 77, 27–50 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chemin, J. Y., Lerner, N.: Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes. J. Differ. Equ., 121, 314–328 (1995)

    Article  MATH  Google Scholar 

  6. Chen, Q., Miao, C., Zhang, Z.: Global well-posedness for the compressible Navier–Stokes equations with the highly oscillating initial velocity. Comm. Pure Appl. Math., 63, 1173–1224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Danchin, R.: Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math., 141, 579–614 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Danchin, R.: Fourier analysis methods for the compressible Navier–Stokes equations, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pp. 1–62, Giga and Novotny Editors, Springer, 2016

    Google Scholar 

  9. Danchin, R., He, L.: The incompressible limit in L p type critical spaces. Math. Ann., 366, 1365–1402 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Danchin, R., Xu, J.: Optimal time-decay estimates for the compressible Navier–Stokes equations in the critical L p framework. Arch. Rational Mech. Anal., 224, 53–90 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem I. Arch. Rational Mech. Anal., 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, Y., Wang, Y. J.: Decay of dissipative equations and negative sobolev spaces. Comm. Part. Differ. Equ., 37, 2165–2208 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haspot, B.: Well-posedness in critical spaces for the system of compressible Navier–Stokes in larger spaces. J. Differ. Equ., 251, 2262–2295 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haspot, B.: Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch. Rational Mech. Anal., 202, 427–460 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoff, D.: Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Equ., 120, 215–254 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hoff, D., Zumbrun, K.: Multidimensional diffusion waves for the Navier–Stokes equations of compressible flow. Indiana Univ. Math. J., 44, 604–676 (1995)

    Article  MATH  Google Scholar 

  17. Kawashima, S.: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, Doctoral Thesis, Kyoto University, 1984

    Google Scholar 

  18. Kagei, Y., Kobayashi, T.: On large time behavior of solutions to the compressible Navier–Stokes equations in the half space in ℝ3. Arch. Rational Mech. Anal., 165, 89–159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kagei, Y., Kobayashi, T.: Asymptotic behavior of solutions of the compressible Navier–Stokes equations on the half space. Arch. Rational Mech. Anal., 177, 231–330 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kobayashi, T.: Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in ℝ3. J. Differ. Equ., 184, 587–619 (2002)

    Article  MATH  Google Scholar 

  21. Kobayashi, T., Shibata, Y.: Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain of ℝ3. Comm. Math. Phys., 200, 621–659 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equations with distributions in new function spaces as initial data. Comm. Part. Differ. Equ., 19, 959–1014 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, T. P., Noh, S. E.: Wave propagation for the compressible Navier–Stokes equations. J. Hyper. Diff. Equs. 12, 385–445 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, T. P., Wang, W. K.: The pointwise estimates of diffusion waves for the Navier–Stokes equations in odd multi-dimensions. Comm. Math. Phys., 196, 145–173 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, H. L., Zhang T.: Large time behavior of isentropic compressible Navier–Stokes system in R3. Math. Methods Appl. Sci., 34, 670–682 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Matsumura, A., Nishida, T.: The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser-A, 55, 337–342 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heatconductive gases. J. Math. Kyoto Univ., 20, 67–104 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Okita, M.: Optimal decay rate for strong solutions in critical spaces to the compressible Navier–Stokes equations. J. Differ. Equ., 257, 3850–3867 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ponce, G.: Global existence of small solution to a class of nonlinear evolution equations. Nonlinear Anal. TMA, 9, 339–418 (1985)

    Article  MathSciNet  Google Scholar 

  30. Sohinger, V., Strain, R. M.: The Boltzmann equation, Besov spaces, and optimal time decay rates in Rnx. Adv. Math., 261, 274–332 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, J., Kawashima, S.: Frequency-localization Duhamel principle and its application to the optimal decay of dissipative systems in low dimensions. J. Differ. Equ., 261, 2670–2701 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, J., Kawashima, S.: The optimal decay estimates on the framework of Besov spaces for generally dissipative systems. Arch. Rational Mech. Anal., 218, 275–315 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zeng, Y.: L 1 Asymptotic behavior of compressible isentropic viscous 1-D flow. Comm. Pure Appl. Math., 47, 1053–1082 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J. A Note on Time-Decay Estimates for the Compressible Navier–Stokes Equations. Acta. Math. Sin.-English Ser. 34, 662–680 (2018). https://doi.org/10.1007/s10114-017-7344-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-017-7344-3

Keywords

MR(2010) Subject Classification

Navigation