Acta Mathematica Sinica, English Series

, Volume 34, Issue 5, pp 873–890 | Cite as

On p-convergent Operators on Banach Lattices

  • Elroy D. Zeekoei
  • Jan H. Fourie


The notion of a p-convergent operator on a Banach space was originally introduced in 1993 by Castillo and Sánchez in the paper entitled “Dunford–Pettis-like properties of continuous vector function spaces”. In the present paper we consider the p-convergent operators on Banach lattices, prove some domination properties of the same and consider their applications (together with the notion of a weak p-convergent operator, which we introduce in the present paper) to a study of the Schur property of order p. Also, the notion of a disjoint p-convergent operator on Banach lattices is introduced, studied and its applications to a study of the positive Schur property of order p are considered.


p-convergent operator disjoint p-convergent operator weak p-convergent operator Schur property of order p positive Schur property of order p 

MR(2010) Subject Classification

47B07 47B60 46B20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abramovich, Y. A., Aliprantis, C. D.: Problems in Operator Theory, Graduate Studies in Mathematics, 51, AMS, Providence, Rhode Island, 2002zbMATHGoogle Scholar
  2. [2]
    Albiac, F., Kalton, N. J.: Topics in Banach Space Theory, Graduate Texts in Mathematics, 233, Springer Inc., New York, 2006zbMATHGoogle Scholar
  3. [3]
    Aliprantis, C. D., Burkinshaw, O.: Positive Operators, Springer, Dordrecht, 2006CrossRefzbMATHGoogle Scholar
  4. [4]
    Aywa, S., Fourie, J. H.: On convergence of sections of sequences in Banach spaces. Rend. Circ. Mat. Palermo (2), XLIX, 141–150 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Castillo, J. M. F., S´anchez, F.: Dunford–Pettis-like properties of continuous vector function spaces. Rev. Mat. Complut., 6(1), 43–59 (1993)MathSciNetzbMATHGoogle Scholar
  6. [6]
    Diestel, J.: Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 922, Springer-Verlag, New York, 1984Google Scholar
  7. [7]
    Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators, Cambrigde University Press, Cambridge, 1995CrossRefzbMATHGoogle Scholar
  8. [8]
    Dodds, P. G., Fremlin, D. H.: Compact operators on Banach lattices. Israel J. Math., 34, 287–320 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Drewnowski, L.: On Banach spaces with the Gelfand–Phillips property. Math. Z., 193, 405–411 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Fourie, J. H., Swart, J.: Banach ideals of p-compact operators. Manuscripta Math., 26, 349–362 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Fourie, J. H., Zeekoei, E. D.: DP*-properties of order p on Banach spaces. Quaest. Math., 37(3), 349–358 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Fourie, J. H., Zeekoei, E. D.: On weak-star p-convergent operators. Quaest. Math., 40(5), 563–579 (2017)MathSciNetCrossRefGoogle Scholar
  13. [13]
    Groenewegen, G., Meyer-Nieberg, P.: An elementary and unified approach to disjoint sequence theorems. Indag. Math., 48, 313–317 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Meyer-Nieberg, P.: Banach Lattices, Springer-Verlag, Berlin, Heidelberg, 1991CrossRefzbMATHGoogle Scholar
  15. [15]
    Moussa, M., Bouras, K.: About positive weak Dunford–Pettis operators on Banach lattices. J. Math. Anal. Appl., 381, 891–896 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S´anchez, J. A.: The positive Schur property in Banach lattices. Extracta Math., 7(2–3), 161–163 (1992)MathSciNetGoogle Scholar
  17. [17]
    Schaefer, H. H.: Banach Lattices and Positive Operators, Springer-Verlag, New York, 1974CrossRefzbMATHGoogle Scholar
  18. [18]
    Wickstead, A. W.: Converses for the Dodds–Fremlin and Kalton–Saab theorems. Math. Proc. Cambridge Philos. Soc., 120, 175–179 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Wnuk, W.: Some characterizations of Banach lattices with the Schur property. Rev. Mat. Complut., 2, 217–224 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Wnuk, W.: A note on the positive Schur property. Glasg. Math. J., 31, 169–172 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Wnuk, W.: Banach Lattices with the Weak Dunford–Pettis Property. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, XLII, 227–236 (1994)MathSciNetzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Unit for Business Mathematics and InformaticsNorth-West University (NWU)PotchefstroomSouth Africa

Personalised recommendations