Acta Mathematica Sinica, English Series

, Volume 33, Issue 11, pp 1504–1512 | Cite as

Arithmetic properties for cubic partition pairs modulo powers of 3

Article
  • 35 Downloads

Abstract

Let b(n) denote the number of cubic partition pairs of n. In this paper, we aim to provide a strategy to obtain arithmetic properties of b(n). This gives affirmative answers to two of Lin’s conjectures.

Keywords

Cubic partition pair congruence 

MR(2010) Subject Classification

05A17 11P83 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Many thanks go to George E. Andrews for encouraging me in the study of partition theory.

References

  1. [1]
    Baruah, N. D., Ojah, K. K.: Some congruences deducible from Ramanujan’s cubic continued fraction. Int. J. Numbe. Theory, 7(5), 1331–1343 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Chan, H. C.: Ramanujan’s cubic continued fraction and an analog of his “most beautiful identity”. Int. J. Numbe. Theory, 6(3), 673–680 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Chen, W. Y. C., Lin, B. L. S.: Congruences for the number of cubic partitions derived from modular forms. preprint, arXiv:0910.1263, 15 pp.Google Scholar
  4. [4]
    Chern, S., Dastidar, M. G.: Congruences and recursions for the cubic partition. Ramanujan J., in press, DOI: 10.1007/s11139-016-9852-7Google Scholar
  5. [5]
    Kim, B.: Partition statistics for cubic partition pairs. Electron. J. Combin., 18(1), Paper 128, 7 pp. (2011)Google Scholar
  6. [6]
    Lin, B. L. S.: Congruences modulo 27 for cubic partition pairs. J. Numbe. Theory, 171, 31–42 (2017)MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Shen, L. C.: On the modular equations of degree 3. Proc. Amer. Math. Soc., 122(4), 1101–1114 (1994)MathSciNetMATHGoogle Scholar
  8. [8]
    Zhao, H., Zhong, Z.: Ramanujan type congruences for a partition function. Electron. J. Combin., 18(1), Paper 58, 9 pp. (2011)Google Scholar
  9. [9]
    Zhou, R. R.: Multiranks for partitions into multi-colors. Electron. J. Combin., 19(2), Paper 8, 17 pp. (2012)Google Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations