Acta Mathematica Sinica, English Series

, Volume 33, Issue 11, pp 1443–1462 | Cite as

Multilinear singular integral operators with generalized kernels and their multilinear commutators



In this paper, the authors study a class of multilinear singular integral operators with generalized kernels and their multilinear commutators with BMO functions. By establishing the sharp maximal estimates, the boundedness on product of weighted Lebesgue spaces and product of variable exponent Lebesgue spaces is obtained, respectively. Moreover, the endpoint estimate of this class of mutilinear singular integral operators is also established. These results can improve the corresponding known results of classical multilinear Calderón–Zygmund operators and multilinear Calderón–Zygmund operators with Dini type kernels.


Multilinear singular integral sharp maximal function multilinear commutator BMO function 

MR(2010) Subject Classification

42B20 42B35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the referees for their time and comments.


  1. [1]
    Alvarez, J., Pérez, C.: Estimates with A weights for various singular integral operators. Boll. Unione Mat. Ital., 8, 123–133 (1994)MathSciNetMATHGoogle Scholar
  2. [2]
    Chang, D. C., Li, J. F., Xiao, J.: Weighted scale estimates for Calderón–Zygmund type operators. Contemporar. Math., 446, 61–70 (2007)CrossRefMATHGoogle Scholar
  3. [3]
    Coifman, R. R., Meyer, Y.: On commutators of singular integrals and bilinear singular integrals. Trans. Amer. Math. Soc., 212, 315–331 (1975)MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Coifman, R. R., Meyer, Y.: Commutateurs dintgrales singulires et oprateurs multilinaires. Ann. Inst. Fourie. (Grenoble), 28, 177–202 (1978)CrossRefGoogle Scholar
  5. [5]
    Coifman, R. R., Meyer, Y.: Au-delà des opérateurs pseudo-différentiels. Astérisque, 57, (1978)MATHGoogle Scholar
  6. [6]
    Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Birkhäuser, Springer, Basel, 2013CrossRefMATHGoogle Scholar
  7. [7]
    Cruz-Uribe, D., Fiorenza, A., Martell, J. M., et al.: The boundedness of classical operators on variable L p spaces. Ann. Acad. Sci. Fenn. Math., 31, 239–264 (2006)MathSciNetMATHGoogle Scholar
  8. [8]
    Cruz-Uribe, D., Martell, J. M., Pérez, C.: Sharp two-weight inequalities for singular integrals, with applications to the Hilbert transform and the Sarason conjecture. Adv. Math., 216, 647–676 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Diening, L.: Maximal function on Musielak–Orlicz spaces and generlaized Lebesgue spaces. Bull. Sci. Math., 129, 657–700 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Diening, L., Harjulehto, P., Hästö, P., et al.: Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., Springer-Verlag, Berlin, 2011Google Scholar
  11. [11]
    Diening, L., Ružička M.: Calderón–Zygmund operators on generalized Lebesgue spaces L p(·) and problems related to fluid dynamics. J. Reine. Angew. Math., 563, 197–220 (2003)MathSciNetMATHGoogle Scholar
  12. [12]
    Duong, X. T., Grafakos L., Yan, L.: Multilinear operators with non-smooth kernels and commutators of singular integrals. Trans. Amer. Math. Soc., 362, 2089–2113 (2010)MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Fefferman, C., Stein, E. M.: H p spaces of several variables. Act. Math., 129, 137–193 (1972)CrossRefMATHGoogle Scholar
  14. [14]
    Garca-Cuerva, J., Rubio de Francia, J. L.: Weighted Norm Inequalities and Related Topics, North-Holland Math. Studies, 116, North-Holland Publishing Co, Amsterdam, 1985Google Scholar
  15. [15]
    Grafakos, L., Kalton, N.: Multilinear Calderón–Zygmund operators on Hardy spaces. Collect. Math., 52, 169–179 (2001)MathSciNetMATHGoogle Scholar
  16. [16]
    Grafakos, L., Martell, J. M.: Extrapolation of weighted norm inequalities for multivariable operators and applications. J. Geom. Anal., 14, 19–46 (2004)MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    Grafakos, L., Torres, R.: Multilinear Calderón–Zygmund theory. Adv. Math., 165, 124–164 (2002)MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    Grafakos, L., Torres, R.: Maximal operator and weighted norm inequalities for multilinear singular integrals. Indiana Univ. Math. J., 51, 1261–1276 (2002)MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    Hart, J.: A new proof of the bilinear T(1) theorem. Proc. Amer. Math. Soc., 142, 3169–3181 (2014)MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    Hong, Q., Zhang, L.: L p estimates for bi-parameter and bilinear Fourier integral operators. Acta Math. Sin., Engl. Ser., 33, 165–186 (2017)MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    Hu, G. E.: Estimates for the maximal bilinear singular integral operators. Acta Math. Sin., Engl. Ser., 31, 847–862 (2015)MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    Iida, T., Komori-Furuya, Y., Sato, E.: A note on multilinear fractional integrals (English summary). Anal. Theor. Appl., 26, 301–307 (2010)CrossRefMATHGoogle Scholar
  23. [23]
    Jawerth, B., Torchinsky, A.: Local sharp maximal functions. J. Approx. Theory, 43, 231–270 (1985)MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    John, F.: Quasi-isometric mappings, Seminari 1962-1963 di Analisi, Algebra, Geometria e Topologia, Ist Nazarene Alta Matematica 2 (Edizioni Cremonese, Rome), 462–473, 1965Google Scholar
  25. [25]
    Kenig, C., Stein, E.: Multilinear estimates and fractional integration. Math. Res. Lett., 6, 1–5 (1999)MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    Kováčik, O., Rákosník, J.: On spaces L p(x) and W k,p(x). Czechoslovak Math. J., 41, 592–618 (1991)MathSciNetMATHGoogle Scholar
  27. [27]
    Lacey, M., Thiele, C.: L p estimates on the bilinear Hilbert transform for 2 < p < ∞. Ann. Math., 146, 693–724 (1997)MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    Lacey, M., Thiele, C.: On Calderón’s conjecture. Ann. Math., 149, 475–496 (1999)MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    Lerner, A. K.: Weighted norm inequalities for the local sharp maximal function. J. Fourier Anal. Appl., 10, 465–474 (2004)MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    Lerner, A. K.: A pointwise estimate for the local sharp maximal function with applications to singular integrals. Bull. London Math. Soc., 42, 843–856 (2010)MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    Lerner, A. K., Ombrosi, S., Pérez, C., et al.: New maximal functions and multiple weights for the multilinear Calderón–Zygmund theory. Adv. Math., 220, 1222–1264 (2009)MathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    Li, X., Lu, G. Z., Tang, H. L.: Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s condition in variable exponent Sobolev spaces. Acta Math. Sin., Engl. Ser., 31, 1067–1085 (2015)MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    Li, K., Sun, W.: Weighted estimates for multilinear pseudodifferential operators. Acta Math. Sin., Engl. Ser., 30, 1281–1288 (2014)MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    Lian, J., Wu, H.: A class of commutators for multilinear fractional integrals in nonhomogeneous spaces. J. Inequ. Appl., 2008, 373050 (2008)MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    Lin, Y.: Endpoint estimates for Calderón–Zygmund type operators. Acta Math. Sin., Engl. Ser., 26, 523–532 (2010)MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    Lin, Y.: Endpoint estimates for multilinear singular integral operators. Georgian Math. J., 23, 559–570 (2016)MathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    Lin, Y., Lu, S. Z.: Strongly singular Calderón–Zygmund operators and their commutators. Jordan J. Math. Stat., 1, 31–49 (2008)MATHGoogle Scholar
  38. [38]
    Lin, Y., Xu, M.: Endpoint estimates for Marcinkiewicz integrals on weighted weak Hardy spaces. Acta Math. Sin., Engl. Ser., 31, 430–444 (2015)MathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    Lin, Y., Zhang, G. M.: Weighted estimates for commutators of strongly singular Calderón–Zygmund operators. Acta Math. Sin., Engl. Ser., 32, 1297–1311 (2016)MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    Lu, G., Zhang, P.: Multilinear Calderón–Zygmund operator with kernels of Dinis type and applications. Nonlinear Anal. TMA, 107, 92–117 (2014)CrossRefMATHGoogle Scholar
  41. [41]
    Maldonado, D., Naibo, V.: Weighted norm inequalities for paraproducts and bilinear pseudodifferential operators with mild regularity. J. Fourier Anal. Appl., 15, 218–261 (2009)MathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    Moen, K.: Weighted inequalities for multilinear fractional integral operators. Collect. Math., 60, 213–238 (2009)MathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    Pérez, C., Pradolini, G., Torres, R. H., et al.: Endpont estimates for iterated commutators of multilinear singular integral. Bull. Lond. Math. Soc., 46, 26–42 (2014)MathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    Pérez, C., Torres, R. H.: Sharp maximal function estimates for multilinear singular integrals. Contemp. Math., 320, 323–331 (2003)MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    Pérez, C., Trujillo-Gonzlez, R.: Sharp weighted estimates for multilinear commutators. J. Lond. Math. Soc., 65, 672–692 (2002)MathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    Si, Z., Xue, Q.: Weighed inequalities for commutators of vector-valued maximal multilinear operators. Nonlinear Anal. TMA, 96, 96–108 (2014)CrossRefMATHGoogle Scholar
  47. [47]
    Strömberg, J. O.: Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Indiana Univ. Math. J., 28, 511–544 (1979)MathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    Tang, L.: Weighed estimates for vector-valued commutators of multilinear operators. Proc. Roy. Soc. Edinburgh Sect. A, 138, 897–922 (2008)MathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    Xu, J.: Boundedness in Lebesgue spaces for commutators of multilinear singular integrals and RBMO functions with non-doubling measures. Sci. Chin. Math., 50, 361–376 (2007)MathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    Zhang, P.: Multiple weighted estimates for commutators of multilinear maximal function. Acta Math. Sin., Engl. Ser., 31, 973–994 (2015)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of SciencesChina University of Mining and TechnologyBeijingP. R. China
  2. 2.Department of Mathematical SciencesBall State UniversityMuncieUSA

Personalised recommendations