Acta Mathematica Sinica, English Series

, Volume 33, Issue 11, pp 1578–1586 | Cite as

Recursion relations for the constrained multi-component KP hierarchy

  • Xu Gao
  • Chuan Zhong Li
  • Jing Song He


In this paper, we define a new constrained multi-component KP(cMKP) hierarchy which contains the constrained KP(cKP) hierarchy as a special case. We derive the recursion operator of the constrained multi-component KP hierarchy. As a special example, we also give the recursion operator of the constrained two-component KP hierarchy.


Recursion relation the KP hierarchy the constrained KP hierarchy the constrained multicomponent KP hierarchy the constrained two-component KP hierarchy 

MR(2010) Subject Classification

37K05 37K10 35Q53 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the referees for their time and comments.


  1. [1]
    Aratyn, H., Nissimov, E., Pacheva, S.: Constrained KP hierarchies: additional symmetries, Darboux-Bäcklund solutions and relations to multi-matrix models. Int. J. Mod. Phys. A, 12, 1265–1340 (1997)CrossRefMATHGoogle Scholar
  2. [2]
    Cheng, Y.: Constraints of the Kadomtsev–Petviashvili hierarchy. J. Math. Phys., 33, 3774–3782 (1992)MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Cheng, Y., Li, Y. S.: The constraint of the Kadomtsev–Petviashvili equation and its special solutions. Phys. Lett. A, 157, 22–26 (1991)MathSciNetCrossRefGoogle Scholar
  4. [4]
    Date, E., Kashiwara, M., Jimbo, M., et al.: Transformation Groups for Soliton Equations, World Scientific, Singapore, 1983MATHGoogle Scholar
  5. [5]
    Dickey, L. A.: Soliton Equations and Hamiltonian Systems (2nd Edition), World Scientific, Singapore, 2003CrossRefMATHGoogle Scholar
  6. [6]
    Dickey, L. A.: Additional symmetries of KP, Grassmannian, and the string equation II. Modern Phys. Lett. A, 8, 1357–1377 (1993)MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Flaschka, H.: Nonlinear Integrable Systems — Classical and Quantum Theory, ed. Jimbo, M. and Miwa T., World Scientific, Singapore, 1983Google Scholar
  8. [8]
    Fokas, A. S., Santini, P. M.: The recursion operator of the Kadomtsev–Petviashvili equation and the squared eigenfunctions of the Schrödinger operator. Stud. Appl. Math., 75, 179–185 (1986)MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Fokas, A. S., Santini, P. M.: Recursion operators and bi-Hamiltonian structures in multidimensions II. Commun. Math. Phys., 116, 449–474 (1988)MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Fuchssteiner, B., Fokas, A. S.: Symplectic structures, their Bäcklund transformation and hereditary symmetries. Phys. D, 4, 47–66 (1981)MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    Gu, Z. Q.: Classical Liouville completely integrable systems associated with the solutions of Boussinesq–Burgers hierarchy. J. Math. Phys., 31, 1374 (1990)MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Gurses, M., Karasu, A., Sokolov, V. V.: On construction of recursion operators from Lax representation. J. Math. Phys., 40, 6473–6490 (1999)MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Konopelchenko, B., Sidorenko, J., Strampp, W.: (1+1)-dimensional integrable systems as symmetry constraints of (2+1)-dimensional systems. Phys. Lett. A, 157, 17–21 (1991)MathSciNetCrossRefGoogle Scholar
  14. [14]
    Konopelchenko, B., Strampp, W.: The AKNS hierarchy as symmetry constraint of the KP hierarchy. Invers. Problems, 7, 17–24 (1991)MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Li, C. Z., Tian, K., He, J., et al.: Recursion operator for a constrained CKP hierarchy. Acta Math. Sci., 31B, 1295–1302 (2011)MathSciNetMATHGoogle Scholar
  16. [16]
    Liu, X. J., Zeng, Y. B., Lin, R. L.: A new extended KP hierarchy. Phys. Lett. A, 372, 3819–3823 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    Loris, I.: Recursion Operator for a Constraint BKP System, World Scientific, Singapore, 1999MATHGoogle Scholar
  18. [18]
    Matsukidaira, J., Satsuma, J., Strampp, W.: Conserved quantities and symmetries of KP hierarchy. J. Math. Phys., 31, 1426–1434 (1990)MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    Oevel, W.: Darboux theorems and Wronskian formulas for integrable systems I: Constrained KP flows. Phys. A, 195, 533–576 (1993)MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    Oevel, W., Strampp, W.: Constrained KP hierarchy and bi-Hamiltonian structures. Commun. Math. Phys., 157, 51–81 (1993)MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    Olver, P. J.: Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986CrossRefMATHGoogle Scholar
  22. [22]
    Santini, P. M., Fokas, A. S.: Recursion operators and bi-Hamiltonian structures in multidimensions I. Commun. Math. Phys., 115, 375–419 (1988)MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    Stephen, C. A.: Bi-Hamiltonian operators, integrable flows of curves using moving frames and geometric map equations. J. Phys. A: Math. Gen., 39, 2043–2072 (2006)MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    Strampp, W., Oevel, W.: Recursion operators and Hamitonian structures in Sato theory. Lett. Math. Phys., 20, 195–210 (1990)MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    Zakharov, V. E., Konopel’chenko, B. G.: On the theory of recursion operator. Commun. Math. Phys., 94, 483–509 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsNingbo UniversityNingboP. R. China

Personalised recommendations