Acta Mathematica Sinica, English Series

, Volume 33, Issue 6, pp 851–860

All good (bad) words consisting of 5 blocks

Article

Abstract

Generalized Fibonacci cube Qd(f), introduced by Ilić, Klavžar and Rho, is the graph obtained from the hypercube Qd by removing all vertices that contain f as factor. A word f is good if Qd(f) is an isometric subgraph of Qd for all d ≥ 1, and bad otherwise. A non-extendable sequence of contiguous equal digits in a word μ is called a block of μ. Ilić, Klavžar and Rho shown that all the words consisting of one block are good, and all the words consisting of three blocks are bad. So a natural problem is to study the words consisting of other odd number of blocks. In the present paper, a necessary condition for a word consisting of odd number of blocks being good is given, and all the good (bad) words consisting of 5 blocks is determined.

Keywords

Generalized Fibonacci cube isometric subgraph good word bad word 

MR(2010) Subject Classification

05C12 05C60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Azarija, J., Klavžzar, S., Lee, J., et al.: On isomorphism classes of generalized Fibonacci cubes. European J. Combin., 51, 372–379 (2016)MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Azarija, J., Klavžzar, S., Lee, J., et al.: Connectivity of Fibonacci cubes, Lucas cubes and generalized cubes. Discrete Math. Theoret. Comput. Sci., 17 (1), 79–88 (2015)MathSciNetMATHGoogle Scholar
  3. [3]
    Dedó, E., Torri, D., Salvi, N. Z.: The observability of the Fibonacci and the Lucas cubes. Discrete Math., 255, 55–63 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Gregor P.: Recursive fault-tolerance of Fibonacci cube in hypercubes. Discrete Math., 306, 1327–1341 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    Hsu, W. J.: Fibonacci cubes — a new interconnection topology. IEEE Trans. Parallel Distrib. Syst., 4 (1), 3–12 (1993)CrossRefGoogle Scholar
  6. [6]
    Hsu, W. J., Liu, J.: Distributed algorithms for shortest-path, deadlock-free routing and broadcasting in a class of interconnection topologies. Parallel Processing Symposium, 1992, 589–596Google Scholar
  7. [7]
    Ilić A., Klavžzar, S., Rho, Y.: Generalized Fibonacci cubes. Discrete Math., 312, 2–11 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Ilić A., Klavžzar, S., Rho, Y.: Parity index of binary words and powers of prime words. Electron. J. Combin., 19(3), #P44 (2012)MathSciNetMATHGoogle Scholar
  9. [9]
    Ilić A., Klavžzar, S., Rho, Y.: The index of a binary word. Theoret. Comput. Sci., 452, 100–106 (2012)MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Imrich, W., Klavžzar, S.: Product Graphs: Structure and Recognition, Wiley, New York, 2000Google Scholar
  11. [11]
    Klavžzar, S.: On median nature and enumerative properties of Fibonacci-like cubes. Discrete Math., 299, 145–153 (2005)MathSciNetCrossRefGoogle Scholar
  12. [12]
    Klavžzar, S.: Structure of Fibonacci cubes: a survey. J. Comb. Optim., 25, 505–522 (2013)MathSciNetCrossRefGoogle Scholar
  13. [13]
    Klavžzar, S., Shpectorov, S.: Asymptotic number of isometric generalized Fibonacci cubes. European J. Combin., 33, 220–226 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    Klavžzar, S., Rho, Y.: On the Wiener index of generalized Fibonacci cubes and Lucas cubes. Discrete Appl. Math., 187, 155–160 (2015)MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Klavžzar, S., Žigert, P.: Fibonacci cubes are the resonance graphs of fibonaccenes. Fibonacci Quart., 43 (3), 269–276 (2005)MathSciNetMATHGoogle Scholar
  16. [16]
    Liu, J., Hsu, W. J., Chung, M. J.: Generalized Fibonacci cubes are mostly Hamiltonian. J. Graph Theory, 18 (8), 817–829 (1994)MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    Munarini, E., Salvi, N. Z.: Structural and enumerative properties of the Fibonacci cubes. Discrete Math., 255, 317–324 (2002)MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    Salvi, N. Z.: On the existence of cycles of every even length on generalized Fibonacci cubes. Matematiche (Catania), 51, 241–251 (1996)MathSciNetMATHGoogle Scholar
  19. [19]
    Wei, J. X.: The structures of bad words. European J. Combin., 59, 204–214 (2017)MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    Wei, J. X., Zhang, H. P.: Solution to a conjecture on words that are bad and 2-isometric. Theoret. Comput. Sci., 562, 243–251 (2015)MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    Wei, J. X., Zhang, H. P.: Proofs of two conjectures on generalized Fibonacci cubes. European J. Combin., 51, 419–432 (2016)MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    Wei, J. X., Zhang, H. P.: A negative answer to a problem on generalized Fibonacci cubes. Discrete Math., 340, 81–86 (2017)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Mathematics and Statistics ScienceLudong UniversityYantaiP. R. China

Personalised recommendations