Acta Mathematica Sinica, English Series

, Volume 34, Issue 6, pp 947–958 | Cite as

On the Darboux integrability of the Hindmarsh–Rose burster

Article
  • 18 Downloads

Abstract

We study the Hindmarsh–Rose burster which can be described by the differential system
$$\dot x = y - {x^3} + b{x^2} + I - z,\dot y = 1 - 5{x^2} - y,\dot z = \mu \left( {s\left( {x - {x_0}} \right) - z} \right),$$
where b, I, μ, s, x0 are parameters. We characterize all its invariant algebraic surfaces and all its exponential factors for all values of the parameters. We also characterize its Darboux integrability in function of the parameters. These characterizations allow to study the global dynamics of the system when such invariant algebraic surfaces exist.

Keywords

Polynomial integrability rational integrability Darboux polynomials Darboux first integrals invariant algebraic surfaces exponential factors Hindmarsh–Rose burster 

MR(2010) Subject Classification

34C05 34A34 34C14 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Belykh, V. N., Belykh, I. V., Colding-Jorgensen, M., et al.: Homoclinic bifurcations leading to the emergence of bursting oscillations in cell models, The European Physical Journal E: Soft Matter and Biological Physics, 3, 205–219 (2000)Google Scholar
  2. [2]
    Christopher, C., Llibre, J., Pereira, J. V.: Multiplicity of invariant algebraic curves in polynomial vector fields. Pacific J. Math., 229, 63–117 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Darboux, G.: Mémoire sur les équations différentielles du premier ordre et du premier degreé (Mélanges). Bull. Sci. Math. 2éme série, 2, 60–96, 123–144, 151–200 (1878)MATHGoogle Scholar
  4. [4]
    Darboux, G.: De l’emploi des solutions particuli`eres algébriques dans l’intégration des syst`emes d’équations différentielles algébriques. C. R. Math. Acad. Sci. Paris, 86, 1012–1014 (1878)MATHGoogle Scholar
  5. [5]
    Dumortier, F., Llibre, J., Artés, J. C.: Qualitative Theory of Planar Differential Systems, Universitext, Springer-Verlag, Berlin, 2006MATHGoogle Scholar
  6. [6]
    González-Miranda, J. M.: Observation of a continuous interior crisis in the Hindmarsh–Rose neuron model. Chaos, 13, 845–852 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    González-Miranda, J. M.: Complex bifurcation structures in the Hindmarsh–Rose neuron model. Int. J. Bifurcation and Chaos, 17, 3071–3083 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Hindmarsh, J. L., Rose, R. M.: A model of neuronal bursting using three coupled first order differential equations, Proceedings of the Royal Society of London. Series B, Biological Sciences 221, 87–102 (1984) 246, 541–551 (2009)CrossRefGoogle Scholar
  9. [9]
    Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol.-London, 117, 500–544 (1952)CrossRefGoogle Scholar
  10. [10]
    Innocenti, G., Genesio, R.: On the dynamics of chaotic spiking-bursting transition in the Hindmarsh–Rose neuron. Chaos, 19, 023124–8 (2009)MathSciNetCrossRefGoogle Scholar
  11. [11]
    Innocenti, G., Morelli, A., Genesio, R., et al.: Dynamical phases of the Hindmarsh–Rose neuronal model: Studies of the transition from bursting to spiking chaos. Chaos, 17, 043128–11 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Linaro, D., Champneys, A., Desroches, M., et al.: Codimension-two homoclinic bifurcations underlying spike adding in the Hindmarsh–Rose burster. SIAM J. Appl. Dyn. Syst., 11, 939–962 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Llibre, J., Valls, C.: On the integrability of the Bianchi IX system. J. Math. Phys., 46, 072901–13 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    Llibre, J., Valls, C.: Liouvillian and analytic integrability of the quadratic vector fields having an invariant ellipse. Acta Math. Sinica, Engl. Ser., 30, 453–466 (2014)MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Llibre, J., Zhang, X.: Darboux theory of integrability in Cn taking into account the multiplicity. J. Differential Equations, 246, 541–551 (2009)MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    Llibre, J., Zhang, X.: Darboux theory of integrability for polynomial vector fields in Rn taking into account the multiplicity at infinity. Bull. Sci. Math., 133, 765–778 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    Nguyen, L. H., Hong, K. S.: Adaptive synchronization of two coupled chaotic Hindmarsh–Rose neurons by controlling the membrane potential of a slave neuron. Appl. Math. Model., 37, 2460–2468 (2013)MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    Prelle, M. J., Singer, M. F.: Elementary first integrals of differential equations. Trans. Amer. Math. Soc., 279, 215–229 (1983)MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    Silnikov, A., Kolomiets, M.: Methods of the qualitative theory for the Hindmarsh–Rose model: a case study. a tutorial. Int. J. Bifurcation and Chaos, 18, 2141–2168 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    Singer, M. F.: Liouvillian first integrals of differential equations. Trans. Amer. Math. Soc., 333, 673–688 (1992)MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    Storace, M., Linaro, D., de Lange, E.: The Hindmarsh–Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos, 18, 033128–10 (2008)MathSciNetCrossRefGoogle Scholar
  22. [22]
    Terman, D.: Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J. Appl. Math., 51, 1418–1450 (1991)MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    Terman, D.: The transition from bursting to continuous spiking in excitable membrane models. J. Nonlinear Science, 2, 135–182 (1992)MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    Wang, X. J.: Genesis of bursting oscillations in the Hindmarsh–Rose model and homoclinicity to a chaotic saddle. Physica D, 62, 263–274 (1993)MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    Wu, Q., Zhou, J., Xiang, L., et al.: Impulsive control and synchronization of chaotic Hindmarsh–Rose models for neuronal activity. Chaos Solitons Fractals, 41, 2706–2715 (2009)MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    Wu, Y., Xu, J., He, D., et al.: Generalized synchronization induced by noise and parameter mismatching in Hindmarsh–Rose neurons. Chaos Solitons Fractals, 23, 1605–1611 (2005)MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    Yu, H., Peng, J.: Chaotic synchronization and control in nonlinear-coupled Hindmarsh–Rose neural systems. Chaos Solitons Fractals, 29, 342–348 (2006)MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    Zhang, X.: Liouvillian integrability of polynomial differential systems. Trans. Amer. Math. Soc., 368, 607–620 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departament de MatemàtiquesUniversitat Autònoma de BarcelonaBellaterra, Barcelona, CataloniaSpain
  2. 2.Departamento de Matemática, Instituto Superior TécnicoUniversidade Técnica de LisboaLisboaPortugal

Personalised recommendations