Acta Mathematica Sinica, English Series

, Volume 33, Issue 6, pp 861–867 | Cite as

The fourth power mean of the general 2-dimensional Kloostermann sums mod p

Article
  • 45 Downloads

Abstract

The main purpose of this paper is using the analytic methods and the properties of Gauss sums to study the computational problem of one kind fourth power mean of the general 2-dimensional Kloostermann sums mod p, and give an exact computational formula for it.

Keywords

The general 2-dimensional Kloostermann sums Dirichlet character Gauss sums identity 

MR(2010) Subject Classification

11L05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Apostol, T. M.: Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976MATHGoogle Scholar
  2. [2]
    Chowla, S.: On Kloosterman’s sum. Norkse Vid. Selbsk. Fak. Frondheim, 40, 70–72 (1967)MATHGoogle Scholar
  3. [3]
    Deligne, P.: Applications de la formule des traces aux sommes trigonomtriques Cohomologie Etale, Sminaire de Gomtrie Algbrique du Bois-Marie SGA 4 1/2. Lecture Notes in Math., 569, 168–232 (1977)CrossRefGoogle Scholar
  4. [4]
    Duke, W., Iwaniec, H.: A relation between cubic exponential and Kloosterman sums. Contemporary Mathematics, 143, 255–258 (1993)MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    Greene, J., Stanton, D.: The triplication formula for Gauss sums. Aequationes Math., 30, 134–141 (1986)MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    Li, J. H., Liu, Y. N.: Some new identities involving Gauss sums and general Kloosterman sums. Acta Math. Sin., Chin. Ser., 56, 413–416 (2013)MathSciNetMATHGoogle Scholar
  7. [7]
    Luo, W.: Bounds for incomplete Kloostermann sums. J. Number Theory, 75, 41–46 (1999)MathSciNetCrossRefGoogle Scholar
  8. [8]
    Malyshev, A. V.: A generalization of Kloosterman sums and their estimates (in Russian). Vestnik Leningrad University, 15, 59–75 (1960)MathSciNetGoogle Scholar
  9. [9]
    Mordell, L. J.: On a special polynomial congruence and exponential sums. Calcutta Math. Soc., (Calcutta Math. Soc. Golden Jubilee Commemoration Volume) 29–32 (1963)Google Scholar
  10. [10]
    Shparlinski, I. E.: Bounds of incomplete multiple Kloostermann sums. J. Number Theory, 126, 68–73 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    Smith, R. A.: On n-dimensional Kloostermann sums. J. Number Theory, 11, 324–343 (1979)MathSciNetCrossRefGoogle Scholar
  12. [12]
    Ye, Y.: Identities of incomplete Kloostermann sums. Proc. Amer. Math. Soc., 127, 2591–2600 (1999)MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Zhang, W. P.: On the fourth power mean of the general Kloosterman sums. Indian J. Pure Appl. Math., 35, 237–242 (2004)MathSciNetMATHGoogle Scholar
  14. [14]
    Zhang, W. P., Han, D.: A new identity involving the classical Kloosterman sums and 2-dimensional Kloostermann sums. Int. J. Number Theory, 12, 111–119 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of MathematicsNorthwest UniversityXi’anP. R. China

Personalised recommendations