Acta Mathematica Sinica, English Series

, Volume 33, Issue 4, pp 495–500

A characterization of generalized derivations of JSL algebras


DOI: 10.1007/s10114-016-6235-3

Cite this article as:
Chen, L. & Lu, F.Y. Acta. Math. Sin.-English Ser. (2017) 33: 495. doi:10.1007/s10114-016-6235-3


Let Alg ℒ be a J -subspace lattice algebra on a Banach space X and M be an operator in Alg ℒ. We prove that if δ: Alg ℒ → B(X) is a linear mapping satisfying δ(AB) = δ(A)B + Aδ(B) for all A,B ∈ Alg ℒ with AMB = 0, then δ is a generalized derivation. This result can be applied to atomic Boolean subspace lattice algebras and pentagon subspace lattice algebras.


Generalized derivation derivation derivable mapping 

MR(2010) Subject Classification

47B47 47B49 

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MathematicsSoochow UniversitySuzhouP. R. China
  2. 2.Department of MathematicsAnshun UniversityAnshunP. R. China

Personalised recommendations