Skip to main content
Log in

Chung’s law of the iterated logarithm for subfractional Brownian motion

Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Cite this article

Abstract

Let X H = {X H(t), t ∈ ℝ+} be a subfractional Brownian motion in ℝd. We provide a sufficient condition for a self-similar Gaussian process to be strongly locally nondeterministic and show that X H has the property of strong local nondeterminism. Applying this property and a stochastic integral representation of X H, we establish Chung’s law of the iterated logarithm for X H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, T. W.: The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc., 6, 170–176 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anh, V. V., Angulo, J. M., Ruiz-Medina, M. D.: Possible long-range dependence in fractional random fields. J. Statist. Plann. Inference, 80(1–2), 95–110 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benassi, A., Bertrand, P., Cohen, S., et al.: Identification of the Hurst index of a step fractional Brownian motion. Stat. Inference Stoch. Process., 3(1–2), 101–111 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benson, D. A., Meerschaert, M. M., Baeumer, B.: Aquifer operator-scaling and the effect on solute mixing and dispersion. Water Resour. Res., 42, W01415 (2006)

    Article  Google Scholar 

  5. Berman, S. M.: Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J., 23, 69–94 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonami, A., Estrade, A.: Anisotropic analysis of some Gaussian models. J. Fourier Anal. Appl., 9(3), 215–236 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bojdecki, T., Gorostiza, L. G., Talarczyk, A.: Sub-fractional Brownian motion and its relation to occupation times. Statistics and Probability Letters, 69, 405–419 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheridito, P., Kawaguchi, H., Maejima, M.: Fractional Ornstein–Uhlenbeck processes. Electron. J. Probab., 8(3), 14 (2003)

    MATH  Google Scholar 

  9. Dzhaparidze, K., Van, Z. H.: A series expansion of fractional Brownian motion. Probab. Theory Relat. Fields, 103, 39–55 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Kolmogorov, A. N.: Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. C. R. Doklady Acad. Sci. URSS N.S., 26, 115–118 (1940)

    MathSciNet  MATH  Google Scholar 

  11. Lamperti, J.: Semi-stable stochastic processes. Trans. Amer. Math. Soc., 104, 62–78 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, W. V., Linde, W.: Existence of small ball constants for fractional Brownian motions. Sci. Ser. I - Math., 326, 1329–1334 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Li, W. V., Shao, Q. M.: Gaussian processes: inequalities, small ball probabilities and applications. Stochastic Processes: Theory and Methods, 19, 533–597 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Loéve, L.: Probability Theory I, Spring, New York, 1977

    MATH  Google Scholar 

  15. Luan, N., Strong local non-Determinism of sub-Fractional Brownian motion. Applied Math., 6, 2211–2216 (2015)

    Article  Google Scholar 

  16. Luan, N., Xiao, Y.: Spectral conditions for strong local nondeterminism of Gaussian random fields and exact Hausdorff measure of the ranges. J. Fourier Anal. Appl., 18, 118–145 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mandelbrot, B., van Ness J. W.: Fractional Brownian motions, fractional noises and applications. SIAM Review, 10(4), 422–437 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mannersalo, P., Norros, I.: A most probable path approach to queueing systems with general Gaussian input. Comp. Network, 40(3), 399–412 (2002)

    Article  Google Scholar 

  19. Maruyama, G.: The harmonic analysis of stationary stochastic processes. Mem. Fac. Sci. Kyusyu Univ. A., 4, 45–106 (1949)

    MathSciNet  MATH  Google Scholar 

  20. Monrad, D., Rootzén, H.: Small values of Gaussian processes and functional laws of the iterated logarithm. Probab. Th. Rel. Fields, 101, 173–192 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pitman, E. J. G.: On the behavior of the characteristic function of a probability distribution in the neighborhood of the origin. J. Austral. Math. Soc., 8, 423–443 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  22. Samorodnitsky, G, Taqqu, M. S.: Stable non-Gaussian random processes, Stochastic models with infinite variance, Stochastic Modeling, Chapman & Hall, New York, 1994

    MATH  Google Scholar 

  23. Shen, G., Yan, L., Liu, J.: Power variation of Subfractional Brownian motion and application. Acta Math. Sci., 33(4), 901–912 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Talagrand, M.: Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab., 23, 767–775 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tudor, C.: Some properties of the sub-fractional Brownian motion. Stochastics, 79(5), 431–448 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Tudor, C. A., Xiao, Y.: Sample path properties of bifractional Brownian motion. Bernoulli, 13, 1023–1052 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xiao, Y.: Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Related Fields, 109(1), 129–157 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiao, Y.: Strong local nondeterminism of Gaussian random fields and its applications, In: Asymptotic Theory in Probability and Statistics with Applications, (T. L. Lai, Q. M. Shao and L. Qian, editors), 136–176, Higher Education Press, Beijing, 2007

    Google Scholar 

  29. Yan, L., Shen, G.: On the collision local time of sub-fractional Brownian motions. Statist. Probab. Lett., 80, 296–308 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to give my sincere thanks to Professor Yimin Xiao for his encouragement and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Na Luan.

Additional information

Supported by NSFC (Grant Nos. 11201068, 11671041) and “the Fundamental Research Funds for the Central Universities” in UIBE (Grant No. 14YQ07)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, N.N. Chung’s law of the iterated logarithm for subfractional Brownian motion. Acta. Math. Sin.-English Ser. 33, 839–850 (2017). https://doi.org/10.1007/s10114-016-6090-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-016-6090-2

Keywords

MR(2010) Subject Classification

Navigation