Abstract
Let X H = {X H(t), t ∈ ℝ+} be a subfractional Brownian motion in ℝd. We provide a sufficient condition for a self-similar Gaussian process to be strongly locally nondeterministic and show that X H has the property of strong local nondeterminism. Applying this property and a stochastic integral representation of X H, we establish Chung’s law of the iterated logarithm for X H.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
Anderson, T. W.: The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc., 6, 170–176 (1955)
Anh, V. V., Angulo, J. M., Ruiz-Medina, M. D.: Possible long-range dependence in fractional random fields. J. Statist. Plann. Inference, 80(1–2), 95–110 (1999)
Benassi, A., Bertrand, P., Cohen, S., et al.: Identification of the Hurst index of a step fractional Brownian motion. Stat. Inference Stoch. Process., 3(1–2), 101–111 (2000)
Benson, D. A., Meerschaert, M. M., Baeumer, B.: Aquifer operator-scaling and the effect on solute mixing and dispersion. Water Resour. Res., 42, W01415 (2006)
Berman, S. M.: Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J., 23, 69–94 (1973)
Bonami, A., Estrade, A.: Anisotropic analysis of some Gaussian models. J. Fourier Anal. Appl., 9(3), 215–236 (2003)
Bojdecki, T., Gorostiza, L. G., Talarczyk, A.: Sub-fractional Brownian motion and its relation to occupation times. Statistics and Probability Letters, 69, 405–419 (2004)
Cheridito, P., Kawaguchi, H., Maejima, M.: Fractional Ornstein–Uhlenbeck processes. Electron. J. Probab., 8(3), 14 (2003)
Dzhaparidze, K., Van, Z. H.: A series expansion of fractional Brownian motion. Probab. Theory Relat. Fields, 103, 39–55 (2004)
Kolmogorov, A. N.: Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. C. R. Doklady Acad. Sci. URSS N.S., 26, 115–118 (1940)
Lamperti, J.: Semi-stable stochastic processes. Trans. Amer. Math. Soc., 104, 62–78 (1962)
Li, W. V., Linde, W.: Existence of small ball constants for fractional Brownian motions. Sci. Ser. I - Math., 326, 1329–1334 (1998)
Li, W. V., Shao, Q. M.: Gaussian processes: inequalities, small ball probabilities and applications. Stochastic Processes: Theory and Methods, 19, 533–597 (2001)
Loéve, L.: Probability Theory I, Spring, New York, 1977
Luan, N., Strong local non-Determinism of sub-Fractional Brownian motion. Applied Math., 6, 2211–2216 (2015)
Luan, N., Xiao, Y.: Spectral conditions for strong local nondeterminism of Gaussian random fields and exact Hausdorff measure of the ranges. J. Fourier Anal. Appl., 18, 118–145 (2012)
Mandelbrot, B., van Ness J. W.: Fractional Brownian motions, fractional noises and applications. SIAM Review, 10(4), 422–437 (1968)
Mannersalo, P., Norros, I.: A most probable path approach to queueing systems with general Gaussian input. Comp. Network, 40(3), 399–412 (2002)
Maruyama, G.: The harmonic analysis of stationary stochastic processes. Mem. Fac. Sci. Kyusyu Univ. A., 4, 45–106 (1949)
Monrad, D., Rootzén, H.: Small values of Gaussian processes and functional laws of the iterated logarithm. Probab. Th. Rel. Fields, 101, 173–192 (1995)
Pitman, E. J. G.: On the behavior of the characteristic function of a probability distribution in the neighborhood of the origin. J. Austral. Math. Soc., 8, 423–443 (1968)
Samorodnitsky, G, Taqqu, M. S.: Stable non-Gaussian random processes, Stochastic models with infinite variance, Stochastic Modeling, Chapman & Hall, New York, 1994
Shen, G., Yan, L., Liu, J.: Power variation of Subfractional Brownian motion and application. Acta Math. Sci., 33(4), 901–912 (2013)
Talagrand, M.: Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab., 23, 767–775 (1995)
Tudor, C.: Some properties of the sub-fractional Brownian motion. Stochastics, 79(5), 431–448 (2007)
Tudor, C. A., Xiao, Y.: Sample path properties of bifractional Brownian motion. Bernoulli, 13, 1023–1052 (2007)
Xiao, Y.: Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Related Fields, 109(1), 129–157 (1997)
Xiao, Y.: Strong local nondeterminism of Gaussian random fields and its applications, In: Asymptotic Theory in Probability and Statistics with Applications, (T. L. Lai, Q. M. Shao and L. Qian, editors), 136–176, Higher Education Press, Beijing, 2007
Yan, L., Shen, G.: On the collision local time of sub-fractional Brownian motions. Statist. Probab. Lett., 80, 296–308 (2010)
Acknowledgements
I would like to give my sincere thanks to Professor Yimin Xiao for his encouragement and stimulating discussions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by NSFC (Grant Nos. 11201068, 11671041) and “the Fundamental Research Funds for the Central Universities” in UIBE (Grant No. 14YQ07)
Rights and permissions
About this article
Cite this article
Luan, N.N. Chung’s law of the iterated logarithm for subfractional Brownian motion. Acta. Math. Sin.-English Ser. 33, 839–850 (2017). https://doi.org/10.1007/s10114-016-6090-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10114-016-6090-2
Keywords
- Subfractional Brownian motion
- self-similar Gaussian processes
- small ball probability
- Chung’s law of the iterated logarithm