Skip to main content
Log in

Bogomolov multipliers for some p-groups of nilpotency class 2

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

The Bogomolov multiplier B 0(G) of a finite group G is defined as the subgroup of the Schur multiplier consisting of the cohomology classes vanishing after restriction to all abelian subgroups of G. The triviality of the Bogomolov multiplier is an obstruction to Noether’s problem. We show that if G is a central product of G 1 and G 2, regarding K i Z(G i ), i = 1, 2, and θ: G 1G 2 is a group homomorphism such that its restriction \(\theta {|_{{K_1}}}:{K_1} \to {K_2}\) is an isomorphism, then the triviality of B 0(G 1/K 1),B 0(G 1) and B 0(G 2) implies the triviality of B 0(G). We give a positive answer to Noether’s problem for all 2-generator p-groups of nilpotency class 2, and for one series of 4-generator p-groups of nilpotency class 2 (with the usual requirement for the roots of unity).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References (wenxian biaoti)

  1. Ahmad, H., Hajja, S., Kang, M.: Rationality of some projective linear actions. J. Algebra, 228, 643–658 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahmad, A., Magidin, A., Morse, R.: Two-generator p-groups of nilpotency class two and their conjugacy classes. Publ. Math. Debrecen, 81, 145–166 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beneish, E.: Stable rationality of certain invariant field. J. Algebra, 269, 373–380 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bogomolov, F. A.: The Brauer group of quotient spaces by linear group actions. Math. USSR Izv., 30, 455–485 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blyth, R., Morse, R.: Computing the nonabelian tensor square of polycyclic groups. J. Algebra, 321, 2139–2148 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y., Ma, R.: Bogomolov multipliers of some groups of order p 6, (preprint available at arXiv: 1302.0584v2 [math.AG]

  7. Garibaldi, S., Merkurjev, A., Serre, J.-P.: “Cohomological invariants in Galois cohomology”, AMS Univ. Lecture Series vol. 28, Amer. Math. Soc., Providence, 2003

  8. Hajja, S., Kang, M.: Some actions of symmetric groups. J. Algebra, 177, 511–535 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hoshi, A., Kang, M.: Unramified Brauer groups for groups of order p5, preprint available at arXiv: 1109.2966v1 [math.AC]

  10. Hu, S. J., Kang, M.: Noether’s problem for some p-groups, in “Cohomological and geometric approaches to rationality problems”, edited by F. Bogomolov and Y. Tschinkel, Progress in Math. vol. 282, Birkhäuser, Boston, 2010

    Google Scholar 

  11. Hoshi, A., Kang, M., Kunyavskii, B.: Noether’s problem and unramified Brauer groups. Asian J. Math., 17(4), 689–714 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kang, M.: Noether’s problem for metacyclic p-groups. Adv. Math., 203, 554–567 (2005)

    Article  MATH  Google Scholar 

  13. Kang, M.: Noether’s problem for p-groups with a cyclic subgroup of index p 2. Adv. Math., 226, 218–234 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kang, M.: Bogomolov multipliers and retract rationality for semi-direct products. J. Algebra, 397, 407–425 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  15. Kang, M., Kunyavskiĭi, B.: The Bogomolov multiplier of rigid finite groups. Archiv Math., 102(3), 209–218 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuniyoshi, H.: On a problem of Chevalley. Nagoya Math. J., 8, 65–67 (1955)

    MathSciNet  MATH  Google Scholar 

  17. Kunyavskiĭi, B. E.: The Bogomolov multiplier of finite simple groups, Cohomological and geometric approaches to rationality problems, 209217, Progr. Math., 282, Birkhäuser Boston, Inc., Boston, MA, 2010

  18. Michailov, I.: Noether’s problem for abelian extensions of cyclic p-groups. Pacific J. Math, 270(1), 167–189 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moravec, P.: Unramified Brauer groups of finite and infinite groups. Amer. J. Math., 134, 1679–1704 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moravec, P.: Groups of order p 5 and their unramified Brauer groups. J. Algebra, 372, 420–427 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moravec, P.: Unramified Brauer groups and isoclinism. Ars Math. Contemp., 7(2), 337–340 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Saltman, D. J.: Generic Galois extensions and problems in field theory. Adv. Math., 43, 250–283 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Saltman, D. J.: Noether’s problem over an algebraically closed field. Invent. Math., 77, 71–84 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  24. Šafarevic, I. R.: The Lüroth problem. Proc. Steklov Inst. Math., 183, 241–246 (1991)

    Google Scholar 

  25. Swan, R.: Noether’s problem in Galois theory, in “Emmy Noether in Bryn Mawr”, edited by B. Srinivasan and J. Sally, Springer-Verlag, Berlin, 1983

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Michailov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michailov, I. Bogomolov multipliers for some p-groups of nilpotency class 2. Acta. Math. Sin.-English Ser. 32, 541–552 (2016). https://doi.org/10.1007/s10114-016-3667-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-016-3667-8

Keywords

MR(2010) Subject Classification

Navigation