Acta Mathematica Sinica, English Series

, Volume 31, Issue 7, pp 1113–1122 | Cite as

Trivial and simple spectrum for SL(d, ℝ) cocycles with free base and fiber dynamics

  • Mário BessaEmail author
  • Paulo Varandas


Let AC D (M,SL(d,ℝ)) denote the pairs (f,A) so that fA ⊂ Diff1(M) is a C 1-Anosov transitive diffeomorphisms and A is an SL(d,ℝ) cocycle dominated with respect to f. We prove that open and densely in AC D (M,SL(d,ℝ)), in appropriate topologies, the pair (f,A) has simple spectrum with respect to the unique maximal entropy measure µ f . Then, we prove prevalence of trivial spectrum near the dynamical cocycle of an area-preserving map and also for generic cocycles in AutLeb(M) × L p (M,SL(d,ℝ)).


Linear cocycles Lyapunov exponents Anosov diffeomorphisms topological conjugacy maximal entropy measures 

MR(2010) Subject Classification

37A20 37D25 37F15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arbieto, A., Bochi, J.: L p-generic cocycles have one-point Lyapunov spectrum. Stoch. Dyn., 3, 73–81 (2003) Corrigendum. ibid, 3, 419–420 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Barreira, L., Pesin, Ya.: Nonuniform Hyperbolicity, Encyclopedia of Mathematics and Its Applications 115, Cambridge University Press, Cambridge, 2007CrossRefGoogle Scholar
  3. [3]
    Bochi, J.: Genericity of zero Lyapunov exponents. Ergodic Theory Dynam. Systems, 22, 1667–1696 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Bochi, J., Fayad, B.: Dichotomies between uniform hyperbolicity and zero Lyapunov exponents for SL(d,R) cocycles. Bull. Braz. Math. Soc. (N.S.), 37, 307–349 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Bonatti, C., Viana, M.: Lyapunov exponents with multiplicity 1 for deterministic products of matrices. Ergodic Theory Dynam. Systems, 24, 1295–1330 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. In: Lecture Notes in Mathematics, Vol. 470, Springer, 2008zbMATHGoogle Scholar
  7. [7]
    Cong, N.: A generic bounded linear cocycle has simple Lyapunov spectrum. Ergodic Theory Dynam. Systems, 25, 1775–1797 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    de la Llave, R.: Invariants for smooth conjugacy of hyperbolic dynamical systems. II. Comm. Math. Phys., 109(3), 369–378 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Gogolev, A., Guysinsky, M.: C 1-differentiable conjugacy of Anosov diffeomorphisms on three dimensional torus. Discrete Contin. Dyn. Syst., 22(1/2), 183–200 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Halmos, P. R.: Lectures on Ergodic Theory, Chelsea Publishing Co., New York, 1960zbMATHGoogle Scholar
  11. [11]
    Henriksen, M., Woods, R. G.: Separate versus joint continuity: A tale of four topologies. Topology Appl., 97, 175–205 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    Katok, A., Hasselblat, B.: Introduction to the Modern Theory of Dynamical Systems. In: Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1996Google Scholar
  13. [13]
    Marco, J. M., Moriyón, R.: Invariants for smooth conjugacy of hyperbolic dynamical systems. I. Comm. Math. Phys., 109(4), 681–689 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    Marco, J. M., Moriyón, R: Invariants for smooth conjugacy of hyperbolic dynamical systems. III. Comm. Math. Phys. 112(2), 317–333 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    de la Llave, R.: Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems. Comm. Math. Phys., 150, 289–320 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    Oh, Y. G.: C 0-coerciveness of Moser’s problem and smoothing area preserving homeomorphisms. ArXiv. math.DS/0601183 (2006)Google Scholar
  17. [17]
    Newhouse, S.: Quasi-elliptic periodic points in conservative dynamical systems. Amer. J. Math., 99, 1061–1087 (1977)zbMATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    Viana, M.: Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents. Ann. of Math. (2), 167(2), 643–680 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    Viana, M.: Lectures on Lyapunov exponents. In: Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2014Google Scholar
  20. [20]
    Zehnder, E.: Note on smoothing symplectic and volume-preserving diffeomorphisms. In: Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976, volume 597, Lecture Notes in Math., Springer, Berlin, 1977, 828–854Google Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade da Beira InteriorCovilhãPortugal
  2. 2.Departamento de MatemáticaUniversidade Federal da BahiaSalvadorBrazil

Personalised recommendations