Abstract
We show that many harmonic analysis operators in the Bessel setting, including maximal operators, Littlewood-Paley-Stein type square functions, multipliers of Laplace or Laplace-Stieltjes transform type and Riesz transforms are, or can be viewed as, Calderón-Zygmund operators for all possible values of type parameter λ in this context. This extends results existing in the literature, but being justified only for a restricted range of λ.
This is a preview of subscription content, access via your institution.
References
- [1]
Andersen, K. F.: Norm inequalities for ultraspherical and Hankel conjugate functions. Canad. J. Math., 27, 162–171 (1975)
- [2]
Andersen, K. F., Kerman, R. A.: Weighted norm inequalities for generalized Hankel conjugate transformations. Studia Math., 71, 15–26 (1981)
- [3]
Betancor, J. J., Buraczewski, D., Fariña, J. C., et al.: Riesz transforms related to Bessel operators. Proc. Roy. Soc. Edinburgh Sect. A, 137, 701–725 (2007)
- [4]
Betancor, J. J., Castro, A. J., Curbelo, J.: Spectral multipliers for multidimensional Bessel operators. J. Fourier Anal. Appl., 17, 932–975 (2011)
- [5]
Betancor, J. J., Castro, A. J., Curbelo, J.: Harmonic analysis operators associated with multidimensional Bessel operators. Proc. Roy. Soc. Edinburgh Sect. A, 142, 945–974 (2012)
- [6]
Betancor, J. J., Castro, A. J., De Nápoli, P., Fariña, J. C., et al.: Weak type (1, 1) estimates for Caffarelli-Calderón generalized maximal operators for semigroups associated with Bessel and Laguerre operators. Proc. Amer. Math. Soc., 142, 251–261 (2014)
- [7]
Betancor, J. J., Castro, A. J., Nowak, A.: Calderón-Zygmund operators in the Bessel setting. Monatsh. Math., 167, 375–403 (2012)
- [8]
Betancor, J. J., Fariña, J. C., Martínez, T., et al.: Higher order Riesz transforms associated with Bessel operators. Ark. Mat., 46, 219–250 (2008)
- [9]
Betancor, J. J., Fariña, J. C., Sanabria, A.: On Littlewood-Paley functions associated with Bessel operators. Glasg. Math. J., 51, 55–70 (2009)
- [10]
Betancor, J. J., Harboure, E., Nowak, A., et al.: Mapping properties of fundamental operators in harmonic analysis related to Bessel operators. Studia Math., 197, 101–140 (2010)
- [11]
Betancor, J. J., Martínez, T., Rodríguez-Mesa, L.: Laplace transform type multipliers for Hankel transforms. Canad. Math. Bull., 51, 487–496 (2008)
- [12]
Kerman, R. A.: Generalized Hankel conjugate transformations on rearrangement invariant spaces. Trans. Amer. Math. Soc., 232, 111–130 (1977)
- [13]
Kerman, R. A.: Boundedness criteria for generalized Hankel conjugate transformations. Canad. J. Math., 30, 147–153 (1978)
- [14]
Muckenhoupt, B., Stein, E. M.: Classical expansions and their relation to conjugate harmonic functions. Trans. Amer. Math. Soc., 118, 17–92 (1965)
- [15]
Nowak, A., Stempak, K.: Riesz transforms for multi-dimensional Laguerre function expansions. Adv. Math., 215, 642–678 (2007)
- [16]
Nowak, A., Stempak, K.: On L p-contractivity of Laguerre semigroups. Illinois J. Math., 56, 433–452 (2012)
- [17]
Nowak, A., Szarek, T. Z.: Calderón-Zygmund operators related to Laguerre function expansions of convolution type. J. Math. Anal. Appl., 388, 801–816 (2012)
- [18]
Sikora, A.: Multivariable spectral multipliers and analysis of quasielliptic operators on fractals. Indiana Univ. Math. J., 58, 317–334 (2009)
- [19]
Stein, E. M.: Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Annals of Math. Studies 63, Princeton University Press, Princeton, N.J., 1970
- [20]
Stempak, K.: La théorie de Littlewood-Paley pour la transformation de Fourier-Bessel. C. R. Acad. Sci. Paris Sér. I Math., 303, 15–18 (1986)
- [21]
Szarek, T.: Littlewood-Paley-Stein type square functions based on Laguerre semigroups. Acta Math. Hungar., 131, 59–109 (2011)
- [22]
Szarek, T. Z.: On Lusin’s area integrals and g-functions in certain Dunkl and Laguerre settings. Math. Nachr., 285, 1517–1542 (2012)
- [23]
Watson, G. N.: A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1966
Author information
Affiliations
Corresponding author
Additional information
The first author is supported by MTM2010/17974 and an FPU Grant from the Government of Spain
Rights and permissions
About this article
Cite this article
Castro, A.J., Szarek, T.Z. Calderón-Zygmund operators in the Bessel setting for all possible type indices. Acta. Math. Sin.-English Ser. 30, 637–648 (2014). https://doi.org/10.1007/s10114-014-2326-1
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- Bessel operator
- Bessel semigroup
- maximal operator
- square function
- multiplier
- Riesz transform
- Calderón-Zygmund operator
MR(2010) Subject Classification
- 42C05
- 42B20