Skip to main content
Log in

C -solutions for the second type of generalized Feigenbaum’s functional equations

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

This work focuses on the second type of generalized Feigenbaum’s equation

$\left\{ \begin{gathered} \phi (f(x)) = f(f(\phi (x))), \hfill \\ f(0) = 1,0 \leqslant f(x) \leqslant 1,x \in [0,1], \hfill \\ \end{gathered} \right. $

where φ(x) is C -increasing function on [0, 1] and satisfies that φ(0) = 0,0 < φ′(x) < 1 (x ∈ [0, 1]). Using constructive method, we discuss the existence of C -single-valley solutions whose derivatives are not equal to 0 on origin of the above equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campanino, M., Epstein, H.: On the existence of Feigenbaun’s fixed point. Comm. Math. Phys., 79, 261–302 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Couliet, P., Tresser, C.: Itération d’endomorphismes de renormalisation. J. Phys. Colloque., 39, 5–25 (1978)

    Google Scholar 

  3. Douady, A., Hubbard, J. H.: On the dynamics of polynomial-like mapping. Ann. Sci. École Norm. Sup. (4), 18, 287–343 (1985)

    MATH  MathSciNet  Google Scholar 

  4. Eokmann, J. P., Wittwer, P.: A complete proof of the Feigenbaum conjectures. J. Stat. Phys., 46, 455–477 (1987)

    Article  Google Scholar 

  5. Epstein, H.: Fixed point of composition operators II. Nonlinearity, 2, 305–310 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Epstein, H.: Fixed point of the period-doubling operator, Lecture notes, Lausanne, 1992

    Google Scholar 

  7. Epstein, H.: New proofs of the existence of the Feigenbaum function. Comm. Math. Phys., 106, 395–426 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Epstein, H.: Existence and properties of p-tupling fixed points. Comm. Math. Phys., 215, 443–476 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Feigenbaum, M. J.: Quantitative universality for a class of non-linear transformations. J. Stat. Phys., 19, 25–52 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feigenbaum, M. J.: The universal metric properties of non-linear transformations. J. Stat. Phys., 21, 669–706 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lanford, O. E.: A computer assisted proof of the Feigenbaum conjectures. Bull. Amer. Math. Soc., 6, 427–434 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. McCarthy, P. J.: The general exact bijective continuous solution of Feigenbaum’s functional equation. Comm. Math. Phys., 91, 431–443 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  13. McGuire, J. B., Thompson, C. J.: Asymptotic properties of sequences of iterates of nonlinear transformations. J. Stat. Phys., 51, 991–1007 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mestel, B. D., Osbaldestin, A. H.: Asymptotics of scaling parameters for period-doubling in unimodal maps with asymmetric critical points. J. Stat. Phys., 41, 4732–4746 (2000)

    MATH  MathSciNet  Google Scholar 

  15. Mestel, B. D., Osbaldestin, A. H., Tsygvintsev, A. V.: Continued fractions and solutions of the Feigenbaum-Cvitanovic equation. C. R. Acad. Sci. Paris, 334, 683–688 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sullivan, D.: Boubds quadratic differentials and renormalization conjectures, In: F. Browder, ed., Mathematics into Twenty-first Century: 1988 Centennial Symposium, August 8–12, Amer. Math. Soc. Transl. Ser. 2, 417–466 (1992)

    Google Scholar 

  17. Si, J. G., Zhang, M.: Construction of convex solutions for the second type of Feigenbaum’s functional equations. Sci. China Ser. A, 52, 1617–1638 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Thompson, C. J., McGuire, J. B.: Asymptotic and essentially singular solutions of the Feigenbaum equation. J. Stat. Phys., 27, 183–200 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yang, L., Zhang, J. Z.: Feigenbaum equation of the second kind. Sci. China Ser. A, 28, 1061–1069 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Additional information

Supported by National Natural Science Foundation of China, Tian Yuan Foundation (Grant No. 11326129) and the Fundamental Research Funds for the Central Universities (Grant No. 14CX02152A)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M. C -solutions for the second type of generalized Feigenbaum’s functional equations. Acta. Math. Sin.-English Ser. 30, 1785–1794 (2014). https://doi.org/10.1007/s10114-014-2289-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-014-2289-2

Keywords

MR(2010) Subject Classification

Navigation