Skip to main content

Total restrained bondage in graphs

Abstract

A subset S of vertices of a graph G with no isolated vertex is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex in V (G) − S is also adjacent to a vertex in V (G) − S. The total restrained domination number of G is the minimum cardinality of a total restrained dominating set of G. In this paper we initiate the study of total restrained bondage in graphs. The total restrained bondage number in a graph G with no isolated vertex, is the minimum cardinality of a subset of edges E such that G - E has no isolated vertex and the total restrained domination number of G - E is greater than the total restrained domination number of G. We obtain several properties, exact values and bounds for the total restrained bondage number of a graph.

This is a preview of subscription content, access via your institution.

References

  1. Cyman, J., Raczek, J.: On the total restrained domination number of a graph. Australas. J. Combin., 36, 91–100 (2006).

    MathSciNet  MATH  Google Scholar 

  2. Haynes, T. W., Hedetniemi, S. T., Slater, P. J.: Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998

    MATH  Google Scholar 

  3. Henning, M. A.: A survey of selected recent results on total domination in graphs. Discrete Math., 309, 32–63 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  4. Henning, M. A.: Graphs with large total domination number. J. Graph Theory, 35, 21–45 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  5. Ma, D.-X., Chen, X., Sun, L.: On total restrained domination in graphs. Czechoslovak Math. J., 55(130), 165–173 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  6. Zelinka, B.: Remarks on restrained domination and total restrained domination in graphs. Czechoslovak Math. J., 55, 393–396 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauer, D., Harary, F., Nieminen, J., et al.: Domination alteration sets in graphs. Discrete Math., 47, 153–161 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X., Sun, L., Ma, D.: Bondage and reinforcement number of γ f for complete multipartite graphs. J. Beijing Inst. Technol., 12, 89–91 (2003).

    MathSciNet  MATH  Google Scholar 

  9. Domke, G. S., Laskar, R. C.: The bondage and reinforcement numbers of γ f for some graphs. Discrete Math., 167/168, 249–259 (1997).

    Article  MathSciNet  Google Scholar 

  10. Fink, J. F., Jacobson, M. S., Kinch, L. F., et al.: The bondage number of a graph. Discrete Math., 86, 47–57 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  11. Hartnell, B. L., Rall, D. F.: Bounds on the bondage number of a graph. Discrete Math., 128, 173–177 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  12. Raczek, J.: Paired bondage in trees. Discrete Math., 308, 5570–5575 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  13. Teschner, U.: New results about the bondage number of a graph. Discrete Math., 171, 249–259 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, J. H., Liu, H. L., Sun, L.: Independence bondage number and reinforcement number of some graphs. Trans., Beijing Inst. Technol. Beijing Ligong Daxue Xuebao, 23, 140–142 (2003).

    MathSciNet  MATH  Google Scholar 

  15. Dunbar, J. E., Haynes, T. W., Teschner, U., et al.: Bondage, insensitivity, and reinforcement. In: Domination in Graphs: Advanced Topics (T. W. Haynes, S. T. Hedetniemi, P. J. Slater Eds.), Marcel Dekker, New York, 1998, 471–489

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Jafari Rad.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jafari Rad, N., Hasni, R., Raczek, J. et al. Total restrained bondage in graphs. Acta. Math. Sin.-English Ser. 29, 1033–1042 (2013). https://doi.org/10.1007/s10114-013-1085-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-013-1085-8

Keywords

  • Domination
  • total restrained domination
  • bondage

MR(2010) Subject Classification

  • 05C69