Acta Mathematica Sinica, English Series

, Volume 29, Issue 4, pp 651–674 | Cite as

A microscopic convexity principle for spacetime convex solutions of fully nonlinear parabolic equations



We study microscopic spacetime convexity properties of fully nonlinear parabolic partial differential equations. Under certain general structure condition, we establish a constant rank theorem for the spacetime convex solutions of fully nonlinear parabolic equations. At last, we consider the parabolic convexity of solutions to parabolic equations and the convexity of the spacetime second fundamental form of geometric flows.


Spacetime convexity microscopic convexity principle constant rank theorem parabolic convexity spacetime second fundamental form 

MR(2010) Subject Classification

35K10 35B99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10114_2012_1495_MOESM1_ESM.tex (80 kb)
Supplementary material, approximately 80.1 KB.


  1. [1]
    Borell, C.: Brownian motion in a convex ring and quasiconcavity. Comm. Math. Phys., 86, 143–147 (1982)MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Borell, C.: A note on parabolic convexity and heat conduction. Ann. Inst. H. Poincaré Probab. Statist., 32, 387–393 (1996)MathSciNetMATHGoogle Scholar
  3. [3]
    Borell, C.: Diffusion equations and geometric inequalities. Potential Anal., 12, 49–71 (2000)MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Li, P., Yau, S. T.: On the parabolic kernel of the Schrödinger operator. Acta Math., 156, 153–201 (1986)MathSciNetCrossRefGoogle Scholar
  5. [5]
    Hamilton, R.: A matrix Harnack estimate for the heat equation. Comm. Anal. Geom., 1, 113–126 (1993)MathSciNetMATHGoogle Scholar
  6. [6]
    Hamilton, R.: Harnack estimate for the mean curvature flow. J. Differential Geom., 41, 215–226 (1995)MathSciNetMATHGoogle Scholar
  7. [7]
    Chow, B., Chu, S.: Space-time formulation of Harnack inequalities for curvature flows of hypersurfaces. J. Geom. Anal., 11, 219–231 (2001)MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Huisken, G., Sinestrari, C.: Convexity estimates for mean curvature flow and singularities of mean convex surfaces. Acta Math., 183, 45–70 (1999)MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Caffarelli, L., Friedman, A.: Convexity of solutions of some semilinear elliptic equations. Duke Math. J., 52, 431–455 (1985)MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Singer, I., Wong, B., Yau, S. T., et al.: An estimate of gap of the first two eigenvalues in the Schrodinger operator. Ann. Sc. Norm. Super. Pisa Cl. Sci., 12, 319–333 (1985)MathSciNetMATHGoogle Scholar
  11. [11]
    Korevaar, N. J., Lewis, J.: Convex solutions of certain elliptic equations have constant rank Hessians. Arch. Ration. Mech. Anal., 97, 19–32 (1987)MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Bian, B. J., Guan, P. F.: A microscopic convexity principle for nonlinear partial differential equations. Invent. Math., 177, 307–335 (2009)MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Bian, B. J., Guan, P. F.: A structural condition for microscopic convexity principle. Discrete Contin. Dyn. Syst., 28, 789–807 (2010)MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Caffarelli, L., Guan P. F., Ma, X. N.: A constant rank theorem for solutions of fully nonlinear elliptic equations. Comm. Pure Appl. Math., 60, 1769–1791 (2007)MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Guan, P. F., Lin, C. S., Ma, X. N.: The Christoffel-Minkowski problem II: Weingarten curvature equations. Chin. Ann. Math. Ser. B, 27, 595–614 (2006)MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Guan, P. F., Ma, X. N.: The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equation. Invent. Math., 151, 553–577 (2003)MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Guan, P. F., Ma, X. N., Zhou, F.: The Christoffel-Minkowski problem III: Existence and convexity of admissible solutions. Comm. Pure Appl. Math., 59, 1352–1376 (2006)MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Korevaar, N. J.: Convexity of level sets for solutions to elliptic ring problems. Comm. Partial Differential Equations, 15, 541–556 (1990)MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    Bian, B. J., Guan, P. F., Ma, X. N., et al.: A microscopic convexity principle for the level sets of solution for nonlinear elliptic partial diffarential equations. Indiana Univ. Math. J., 60, 101–120 (2011)MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Bianchini, C., Longinetti, M., Salani, P.: Quasiconcave solutions to elliptic problems in convex rings. Indiana Univ. Math. J., 58, 1565–1589 (2009)MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Han, F., Ma, X. N., Wu, D. M.: The existence of k-convex hypersurface with prescribed mean curvature. Calc. Var. Partial Differential Equations, 42, 43–72 (2011)MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    Liu, P., Ma, X. N., Xu, L.: A Brunn-Minkowski inequality for the Hessian eigenvalue in three dimension convex domain. Adv. Math., 225, 1616–1633 (2010)MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    Ma, X. N., Xu, L.: The convexity of solution of a class Hessian equation in bounded convex domain in ℝ3. J. Funct. Anal., 255, 1713–1723 (2008)MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    Korevaar, N. J.: Capillary surface convexity above convex domains. Indiana Univ. Math. J., 32, 73–81 (1983)MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    Korevaar, N. J.: Convex solutions to nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J., 32, 603–614 (1983)MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    Kennington, A. U.: Power concavity and boundary value problems. Indiana Univ. Math. J., 34, 687–704 (1985)MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    Kawohl, B.: A remark on N. Korevaars concavity maximum principle and on the asymptotic uniqueness of solutions to the plasma problem. Math. Methods Appl. Sci., 8, 93–101 (1986)MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    Alvarez, O., Lasry, J. M., Lions, P. L.: Convex viscosity solutions and state constraints. J. Math. Pures Appl., 76, 265–288 (1997)MathSciNetMATHGoogle Scholar
  29. [29]
    Kennington, A. U.: Convexity of level curves for an initial value problem. J. Math. Anal. Appl., 133, 324–330 (1988)MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    Porru, G., Serra, S.: Maximum principles for parabolic equations. J. Austral. Math. Soc. Ser. A, 56, 41–52 (1994)MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    Hu, B. W., Ma, X. N.: Constant rank theorem of the spacetime convex solution of heat equation. Manu. Math., 138, 89–118 (2012)MathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    Hu, B. W., Zhang, Y. B.: Spacetime convex solutions to the heat equation on manifolds. PreprintGoogle Scholar
  33. [33]
    Lieberman, G.: Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996MATHCrossRefGoogle Scholar
  34. [34]
    Zhu, X. P.: Lectures on mean curvature flows, American Mathematical Society and International Press, Providence, RI, 2002MATHGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of Science and Technology of ChinaHefeiP. R. China
  2. 2.Department of Mathematics and Applied MathematicsSouthwest University of Science and TechnologyMianyangP. R. China

Personalised recommendations