## Abstract

We first prove various kinds of expressions for modulus of random convexity by using an *L*
^{0}(*F*,ℝ)-valued function’s intermediate value theorem and the well known Hahn-Banach theorem for almost surely bounded random linear functionals, then establish some basic properties including continuity for modulus of random convexity. In particular, we express the modulus of random convexity of a special random normed module *L*
^{0}(*F,X*) derived from a normed space *X* by the classical modulus of convexity of *X*.

### Similar content being viewed by others

## References

Guo, T. X.: Relations between some basic results derived from two kinds of topologies for a random locally convex module.

*J. Funct. Anal.*,**258**, 3024–3047 (2010)Guo, T. X.: Recent progress in random metric theory and its applications to conditional risk measures.

*Sci. China Ser. A*,**54**, 633–660 (2011)Guo, T. X., Zeng, X. L.: Random strict convexity and random uniform convexity in random normed modules.

*Nonlinear Anal*:*TMA*,**73**, 1239–1263 (2010)Guo, T. X., Zeng, X. L.: An

*L*^{0}(*F*,ℝ)-valued function’s intermediate value theorem and its applications to random uniform convexity.*Acta Mathematica Sinica, English Series*,**28**(5), 909–924 (2012)Liu, P. D.: Martingales and Geometry of Banach Spaces (in Chinese), Wuhan Universiy Press, Wuhan, 2007

Guo, T. X.: Some basic theories of random normed linear spaces and random inner product spaces.

*Acta Anal. Funct. Appl.*,**1**, 160–184 (1999)Guo, T. X., Yang, Y. J.: Ekeland’s variational principle for an \(\bar L^0\)-valued function on a complete random metric space.

*J. Math. Anal. Appl.*,**389**, 1–14 (2012)Zhao, S. E., Guo, T. X.: The random subreflexivity of complete random normed modules.

*Inter. J. Math.*,**23**, Article ID: 1250047 (2012)Guo, T. X., Shi, G.: The algebraic structure of finitely generated modules and the Helly theorem in random normed modules.

*J. Math. Anal. Appl.*,**381**, 833–842 (2011)Guo, T. X., Zhao, S. E.: On the random conjugate spaces of a random locally convex module.

*Acta Mathematica Sinica, English Series*,**28**(4), 687–696 (2012)Wu, M. Z.: The Bishop-Phelps theorem in complete random normed modules endowed with the (

*ε*,*λ*)-topology.*J. Math. Anal. Appl.*,**391**, 648–652 (2012)Guo, T. X.: The relation of Banach-Alaoglu theorem and Banach-Bourbaki-Kakutani-Šmulian theorem in complete random normed modules to stratification structure.

*Sci. China Ser. A*,**51**, 1651–1663 (2008)Zeng, X. L.: On random uniform convexity.

*Acta Anal. Funct. Appl.*,**14**(1), 23–31 (2012)Guo, T. X., Xiao, H. X., Chen, X. X.: A basic strict separation theorem in random locally convex modules.

*Nonlinear Anal.: TMA*,**71**, 3794–3804 (2009)Guo, T. X.: Extension theorems of continuous random linear operators on random domains.

*J. Math. Anal. Appl.*,**193**, 15–27 (1995)Megginson, R. E.: An Introduction to Banach Space Theory, Springer-Verlag, New York, 1998

Zeng, X. L.: A note on the expression of modulus of convexity.

*Annals of Functional Analysis*,**3**(1), 1–9 (2012)Figiel, T.: On the moduli of convexity and smoothness.

*Studia Math.*,**56**, 121–155 (1976)Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II, Springer-Verlag, Berlin, 1979

Goebel, K., Kirk, W. A.: Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990

## Author information

### Authors and Affiliations

### Corresponding author

## Additional information

Supported by National Natural Science Foundation of China (Grant No. 11171015) and Science Foundation of Chongqing Education Board (Grant No. KJ120732)

## Electronic supplementary material

## Rights and permissions

## About this article

### Cite this article

Zeng, X.L. Various expressions for modulus of random convexity.
*Acta. Math. Sin.-English Ser.* **29**, 263–280 (2013). https://doi.org/10.1007/s10114-012-1398-z

Received:

Accepted:

Published:

Issue Date:

DOI: https://doi.org/10.1007/s10114-012-1398-z

### Keywords

- Random normed module
- modulus of random convexity
- Hahn-Banach theorem for almost surely bounded random linear functionals