Skip to main content
Log in

The rate of approximation of Gaussian radial basis neural networks in continuous function space

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

There have been many studies on the dense theorem of approximation by radial basis feedforword neural networks, and some approximation problems by Gaussian radial basis feedforward neural networks (GRBFNs) in some special function space have also been investigated. This paper considers the approximation by the GRBFNs in continuous function space. It is proved that the rate of approximation by GRNFNs with n d neurons to any continuous function f defined on a compact subset K ⊂ ℝd can be controlled by ω(f,n −1/2), where ω(f, t) is the modulus of continuity of the function f.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hartman, E. J., Keeler, J. D., Kowalski, J. M.: Layered neural networks with Gaussian hidden units as universal approximations. Neural Comput., 2, 210–215 (1990)

    Article  Google Scholar 

  2. Park, J., Sandberg, I. W.: Universal approximation using radial-basis function networks. Neural Comput., 3, 246–257 (1991)

    Article  Google Scholar 

  3. Park, J., Sandberg, I. W.: Approximation and radial-basis function networks. Neural Comput., 5, 305–316 (1993)

    Article  Google Scholar 

  4. Chen, T. P., Chen, H.: Approximation capability to functions of several variables, nonlinear functionals and operators by radial basis function neural networks. IEEE Trans. Neural Netw., 6, 904–910 (1995)

    Article  Google Scholar 

  5. Jiang, C. H., Chen, T. P.: Approximation problems of translation invariant operator in Sobolev space W m2 (R d). Chin. Annals Math., Ser. A, 20, 499–504 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Jiang, C. H., Chen, T. P.: Denseness of dilations and translations of a single function. Acta Mathematica Sinica, Chinese Series, 42, 495–500 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Liao, Y., Fang, S. C., Nuttle, H. L. W.: Relaxed conditions for radial-basis function networks to be universal approximators. Neural Netw., 16, 1019–1028 (2003)

    Article  Google Scholar 

  8. Li, X.: On simultaneous approximations by radial basis function neural networks. Appl. Math. Comput., 95, 75–89 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Powell, M. J. D.: The theory of radial basis approximation. In: Advances in Numerical Analysis (ed. W. A. Light), Vol. 2, Oxford University Press, Oxford, 1990, 105–210

    Google Scholar 

  10. Light, W. A., Wayne, H. S. J.: Some aspects of radial basis function approximation. In: Approximation Theory, Spline Functions and Applications (S. P. Singh Ed.), Kluwer Academic, Dordrecht, 1995, 163–190

    Google Scholar 

  11. Schaback, R.: Error estimates and conditions numbers for radial basis functions interpolations. Adv. Comput. Math., 3, 251–264 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schaback, R.: Approximation by radial basis functions with finitely many centers. Constr. Approx., 12, 331–340 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bumann, M., Dyn, N., Levin, D.: On quasi-interpolation by radial basis functions with scattered centers. Constr. Approx., 11, 239–254 (1995)

    Article  MathSciNet  Google Scholar 

  14. Bejancu, A.: The uniform convergence of multivariate natural splines. DAMTP Technical Report, University of Cambridge, 1997

  15. Bejancu, A.: On the accuracy of surface spline approximation and interpolation to bump functions. DAMTP Technical Report, University of Cambridge, 2000

  16. Wendland, H.: Optimal approximation orders on L p for radial basis functions. East J. Approx., 6, 87–102 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Maiorov, V. E.: On best approximation of classes by radial functions. J. Approx. Theory, 120, 36–70 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maiorov, V. E.: On lower bounds in radial basis approximation. Adv. Comput. Math., 22, 103–113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Narcowich, F. J., Ward, J. D., Wendland, H.: Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions. Constr. Approx., 24, 175–186 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Buhman, M.: Radial basis functions. Acta Numer., 9, 1–38 (2000)

    Article  Google Scholar 

  21. Li, X., Micchelli, C. A.: Approximation by radial bases and neural networks. Numer. Algorithms, 25, 241–262 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kainen, P. C., Kårková, V., Sanguineti, M.: Complexity of Gaussian-radial-basis networks approximating smooth functions. J. Complexity, 25, 63–74 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Thomas, H., Amos, R.: Nonlinear approximation using Gaussian kernels. J. Funct. Anal., 259, 203–219 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mhaskar, H. N.: When is approximation by Gaussian networks necessarily a linear process? Neural Netw., 17, 989–1001 (2004)

    Article  MATH  Google Scholar 

  25. Ditzian, Z., Totik, V.: Moduli of Smothness, SSCM 9, Springer-Verlag, New York, 1987

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Long Cao.

Additional information

Supported by National Natural Science Foundation of China (Grant Nos. 61101240 and 61272023) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. Y6110117)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, T.F., Cao, F.L. The rate of approximation of Gaussian radial basis neural networks in continuous function space. Acta. Math. Sin.-English Ser. 29, 295–302 (2013). https://doi.org/10.1007/s10114-012-1369-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-012-1369-4

Keywords

MR(2010) Subject Classification

Navigation