Skip to main content
Log in

The ℓ-adic dualizing complex on an excellent surface with rational singularities

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this article, we show that if X is an excellent surface with rational singularities, the constant sheaf ℚ is a dualizing complex. In coefficient ℤ, we also prove that the obstruction for ℤ to become a dualizing complex, lies on the divisor class groups at singular points. As applications, we study the perverse sheaves and the weights of ℓ-adic cohomology groups on such surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grothendieck, A.: Cohomologie l-adique et fonctions L, SGA 5. Lecture Notes in Math. 589, Springer-Verlag, Berlin, 1977

    Google Scholar 

  2. Riou, J.: Dualité (d’après Ofer Gabber). Unpublished

  3. Lipman, J.: Rational singularities, with applications to algebraic surfaces and unique factorization. Publ. Math. Inst. Hautes Études Sci., 36, 195–279 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  4. Laumon, G.: Homologie étale. In: Séminaire de géométrie analytique (École Norm. Sup., Paris, 1974–75), Astérisque, No. 36–37, Soc. Math. France, Paris, 1976, 163–188

    Google Scholar 

  5. Gabber, O.: Finiteness theorems for étale cohomology of excellent schemes. In: Conference in honor of P. Deligne on the occasion of his 61st birthday, IAS, Princeton, October, 2005

  6. Ekedahl, T.: On the adic formalism. In: The Grothendieck Festschrift, Vol. II, Progr. Math., Vol. 87, Birkhäuser Boston, Boston, MA, 1990, 197–218

    Google Scholar 

  7. Grothendieck, A.: Théorie des Topos et Cohomologie Étale des Schémas, SGA 4. Lecture Notes in Math. 269, 270, 305, Springer-Verlag, Berlin, 1972–73

    Google Scholar 

  8. Beĭlinson, A. A., Bernstein, J., Deligne, P.: Faisceaux pervers. In: Analysis and Topology on Singular Spaces, I (Luminy, 1981), Astérisque, Vol. 100, Soc. Math. France, Paris, 1982, 5–171

    Google Scholar 

  9. Artin, M.: On isolated rational singularities of surfaces. Amer. J. Math., 88, 129–136 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fujiwara, K.: A proof of the absolute purity conjecture (after Gabber). In: Algebraic Geometry 2000, Azumino (Hotaka), Adv. Stud. Pure Math., Vol. 36, Math. Soc. Japan, Tokyo, 2002, 153–183

    Google Scholar 

  11. Gabber, O.: Notes on some t-structures. In: Geometric Aspects of Dwork Theory. Vol. I, II, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, 711–734

    Google Scholar 

  12. Deligne, P.: La conjecture de Weil. II. Publ. Math. Inst. Hautes Études Sci., 52, 137–252 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Li.

Additional information

Supported by National Natural Science Foundation of China (Grant No. 10626036)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T. The ℓ-adic dualizing complex on an excellent surface with rational singularities. Acta. Math. Sin.-English Ser. 28, 1559–1574 (2012). https://doi.org/10.1007/s10114-012-1002-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-012-1002-6

Keywords

MR(2000) Subject Classification

Navigation