Skip to main content
Log in

Asymmetric and moving-frame approaches to MHD equations

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

The magnetohydrodynamic (MHD) equations of incompressible viscous fluids with finite electrical conductivity describe the motion of viscous electrically conducting fluids in a magnetic field. In this paper, we find eight families of solutions of these equations by Xu’s asymmetric and moving frame methods. A family of singular solutions may reflect basic characteristics of vortices. The other solutions are globally analytic with respect to the spacial variables. Our solutions may help engineers to develop more effective algorithms to find physical numeric solutions to practical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerbeau, J. F., Le Bris, C., Lelievre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Crystals, Oxford Science Publication, 2006

  2. Cannone, M., Chen, Q. L., Miao, C.: A losing estimates for the ideal MHD equations with application to blow-up criterion. SIAM J. Math. Anal., 38, 1847–1859 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cannone, M., Miao, C., Prioux, N., et al.: The Cauchy Problem for the Magneto-Hydrodynamic System, Self-Similar Solutions of Nonlinear PDE, 74, Banach Center Publications, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 2006

    Google Scholar 

  4. Chen, Q., Miao, C., Zhang, Z.: The Beale-Kato-Majda criterion for the 3D magnetohydrodynamics equations. Comm. Math. Phys., 275, 861–872 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wu, J.: Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces. Comm. Math. Phys., 263, 803–831 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wu, J.: Regularity criteria for the generalized MHD equatiions. Comm. Partial Differential Equations, 33, 285–306 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang, J.: Wellposedness for the magnetohydrodynamics equation in critical space. Appl. Anal., 87(7), 773–785 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brio, M., Wu, C. C.: An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys., 75, 400–422 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zachary, S., Colella, P.: A higher-order Godunov method for the equations of ideal magnetohydrodynamics. J. Comput. Phys., 99, 341–347 (1992)

    Article  MATH  Google Scholar 

  10. Roe, P. L., Balsara, D. S.: Notes on the eigensystem of magnetohydrodynamics. SIAM J. Appl. Math., 56, 57–67 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dai, W., Woodward, P. R.: An approximate Riemann solver for ideal magnetohydrodynamics. J. Comput. Phys., 111, 354–372 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Croisille, J., Khanfir, R., Chanteur, G.: Numerical simulation of the MHD equations by a kinetic-type method. J. Sci. Comput., 10, 81–92 (1995)

    Article  MATH  Google Scholar 

  13. Linde, T.: A Three-Dimensional Adaptive Multifluid MHD Model of the Heliosphere, Ph.D. thesis, University of Michigan, 1998

  14. Myong, R.: Theoretical and Computational Investigation of Nonlinear Waves in Magnetohydrodynamics, Ph.D. thesis, University of Michigan, 1996

  15. Tóth, G., Odstrcil, D.: Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems. J. Comput. Phys., 128, 82–112 (1996)

    Article  MATH  Google Scholar 

  16. Powell, K. G., Roe, P. L., Linde, T. J., et al.: A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys., 154, 284–309 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, D., Deane, A. E.: An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics. J. Comput. Phys., 228, 952–975 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ryu, D. S., Jones, T. W.: Numerical magnetohydrodynamics in astrophysics: algorithm and tests for one-dimensional flow. Astrophys. J., 442, 228–253 (1995)

    Article  Google Scholar 

  19. Gunzburger, M. D., Meir, A. J., Peterson, J. S.: On the existence and uniqueness and finite element approximation of solutions of the equations of stationary incompressible magnetohydrodynamics. Math. Comp., 56, 523–563 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hasler, U., Schneebeli, A., Schötzau, D.: Mixed finite element approximation of incompressible MHD problems based on weighted regularization. Appl. Numer. Math., 51, 19–45 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math., 96, 771–800 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system. ESAIM: M2AN, 42, 1065–1087 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kang, K. S., Keyes, D. E.: Implicit symmetrized streamfunction formulations of magnetohydrodynamics. Int. J. Numer. Meth. Fluids, 58, 1201–1222 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shivamoggi, B. K.: Impulse formulations of Hall magnetohydrodynamic equations. Phys. Lett. A, 373, 708–710 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vodák, R.: Local solvability of equations of magnetohydrodynamics on the whole space. Nonlinear Anal. Real World Appl., 10, 1424–1442 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cowling, T. G.: Magnetohydrodynamics. Rep. Progr. Phys., 25, 244–286 (1962)

    Article  Google Scholar 

  27. Ibragimov, N. H.: Lie Group Analysis of Differential Equations, Vol 2, CRC Handbook, CRC Press, 1995

  28. Nucci, M. C.: Group analysis for MHD equations. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, 33, 21–34 (1984)

    MathSciNet  MATH  Google Scholar 

  29. Popovych, V. O.: On Lie reduction of the MHD equations to ordinary diffenential equations. Proceedings of the Second International Conference “Symmetry in Nonlinear Mathematical Physics” (Kyiv, July 7–13, 1997), Kyiv, Institute of Mathematics, 1, 1997, 227–231

    MathSciNet  Google Scholar 

  30. Popovych, V. O.: On classes of Lie solutions of MHD equations, expressed via the general solution of the heat equations. J. Nonlinear Math. Phys., 4, 149–151 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Popovych, V. O.: Lie submodels of rank 1 for MHD equations. Proceedings of Institute of Mathematics of NAS of Ukraine, 30, 190–195 (2000)

    MathSciNet  Google Scholar 

  32. Xu, X.: Asymmetric and moving-frame approaches to Navier-Stokes equations. Quart. Appl. Math., 67, 163–193 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Tao Cao.

Additional information

Supported by NSFC (Grant No. 11101436)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, B.T. Asymmetric and moving-frame approaches to MHD equations. Acta. Math. Sin.-English Ser. 28, 1–36 (2012). https://doi.org/10.1007/s10114-012-0503-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-012-0503-7

Keywords

MR(2000) Subject Classification

Navigation