Skip to main content

Finiteness of mapping degree sets for 3-manifolds

Abstract

By constructing certain maps, this note completes the answer of the question: For which closed orientable 3-manifold N, is the set of mapping degrees D(M,N) finite for any closed orientable 3-manifold M?

This is a preview of subscription content, access via your institution.

References

  1. Carlson, J., Toledo, D.: Harmonic mappings of Kähler manifolds to locally symmetric spaces. Inst. Hautes Études Sci. Publ. Math., No. 69, 1989, 173–201

  2. Duan, H. B., Wang, S. C.: Non-zero degree maps between 2n-manifolds. Acta Mathematica Sinica, English Series, 20(1), 1–14 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Wang, S. C.: Non-zero degree maps between 3-manifolds. Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Beijing, Higher Ed. Press, 2002, 457–468

    Google Scholar 

  4. Reznikov, A.: Volumes of discrete groups and topological complexity of homology spheres. Math. Ann., 306(3), 547–554 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Wang, S. C.: The π 1-injectivity of self-maps of nonzero degree on 3-manifolds. Math. Ann., 297(1), 171–189 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Thurston, W.: Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc., 6, 357–381 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Scott, P.: The geometries of 3-manifolds. Bull. Lond. Math. Soc., 15, 401–487 (1983)

    Article  MATH  Google Scholar 

  8. Milnor, J., Thurston, W.: Characteristic numbers of 3-manifolds. Enseignement Math. (2), 23(3–4), 249–254 (1977)

    MATH  MathSciNet  Google Scholar 

  9. Gromov, M.: Volume and bounded cohomology. Inst. Hautes Études Sci. Publ. Math., No. 56, 1982, 5–99

  10. Soma, T.: The Gromov invariant of links. Invent. Math., 64, 445–454 (1982)

    Article  MathSciNet  Google Scholar 

  11. Brooks, R., Goldman, W.: The Godbillon-Vey invariant of a transversely homogeneous foliation. Trans. Amer. Math. Soc., 286(2), 651–664 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Brooks, R., Goldman, W.: Volumes in Seifert space. Duke Math. J., 51(3), 529–545 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Derbez, P., Wang, S. C.: Graph manifolds have virtualy positive Seifert volume. math.GT (math.AT) arXiv:0909.3489

  14. Du, X. M.: On self-mapping degrees of S 3-geometry 3-manifolds. Acta Mathematica Sinica, English Series, 25(8), 1243–1252 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sun, H. B., Wang, S. C., Wu, J. C.: Self-mapping degrees of torus bundles and torus semi-bundles. Osaka J. Math., 47(1), 131–155 (2010)

    MATH  MathSciNet  Google Scholar 

  16. Sun, H. B., Wang, S. C., Wu, J. C., et al.: Self-mapping degrees of 3-manifolds. To appear in Osaka J. Math., math.GT (math.AT), arXiv:0810.1801

  17. Stallings, J.: A topological proof of Grushko’s theorem on free products. Math. Z., 90, 1–8 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rong, Y. W., Wang, S. C.: The preimage of submanifolds. Math. Proc. Camb. Phil. Soc., 112, 271–279 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Derbez.

Additional information

The third author is partially supported by National Natural Science Foundation of China (Grant No. 10631060) and Ph.D. grant of the Ministry of Education of China (Grant No. 5171042-055)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Derbez, P., Sun, H.B. & Wang, S.C. Finiteness of mapping degree sets for 3-manifolds. Acta. Math. Sin.-English Ser. 27, 807 (2011). https://doi.org/10.1007/s10114-011-0416-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10114-011-0416-x

Keywords

  • 3-Manifolds
  • mapping degrees
  • finiteness

MR(2000) Subject Classification

  • 57M99
  • 55M25