Skip to main content
Log in

On the rates of the other law of the logarithm

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

Let X, X 1, X 2, … be i.i.d. random variables, and set S n = X 1 + … + X n , M n = maxkn |S k |, n ≧ 1. Let \(a_n = o\left( {{{\sqrt n } \mathord{\left/ {\vphantom {{\sqrt n } {\log n}}} \right. \kern-\nulldelimiterspace} {\log n}}} \right)\) . By using the strong approximation, we prove that, if EX = 0, VarX = σ 2 > 0 and E|X|2+ε < ∞ for some ε > 0, then for any r > 1,

$$\mathop {\lim }\limits_{{{\varepsilon \nearrow 1} \mathord{\left/ {\vphantom {{\varepsilon \nearrow 1} {\sqrt {r - 1} }}} \right. \kern-\nulldelimiterspace} {\sqrt {r - 1} }}} \left[ {\varepsilon ^{ - 2} - \left( {r - 1} \right)} \right]\sum\limits_{n = 1}^\infty {n^{r - 2} P\left\{ {M_n \leqslant \varepsilon \sigma \sqrt {{{\pi ^2 n} \mathord{\left/ {\vphantom {{\pi ^2 n} {\left( {8\log n} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {8\log n} \right)}}} + a_n } \right\}} = \frac{4} {\pi }.$$

We also show that the widest a n is \(o\left( {{{\sqrt n } \mathord{\left/ {\vphantom {{\sqrt n } {\log n}}} \right. \kern-\nulldelimiterspace} {\log n}}} \right)\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hsu, P. L., Robbins, H.: Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. USA, 33, 25–31 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baum, L. E., Katz, M.: Convergence rates in the law of large numbers. Trans. Amer. Math. Soc., 120, 108–123 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  3. Heyde, C. C.: A supplement to the strong law of large numbers. J. Appl. Probab., 12, 173–175 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, R.: A remark on the tail probability of a distribution. J. Multi. Anal., 8, 328–333 (1978)

    Article  MATH  Google Scholar 

  5. Spătaru, A.: Precise asymptotics in Spitzer’s law of large numbers. J. Theoret. Probab., 12, 811–819 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  6. Gut, A., Spătaru, A.: Precise asymptotics in the Baum-Katz and Davis law of large numbers. J. Math. Anal. Appl., 248, 233–246 (2000a)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gut, A., Spătaru, A.: Precise asymptotics in the law of the iterated logarithm. Ann. Probab., 28, 1870–1883 (2000b)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lai, T. L.: Limit theorems for delayed sums. Ann. Probab., 2, 432–440 (1975)

    Article  Google Scholar 

  9. Chow, Y. S., Lai, T. L.: Some one-sided theorems on the tail distribution of sample sums with applications to the last time and largest excess of boundary crossings. Trans. Amer. Math. Soc., 208, 51–72 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liang, H. Y., Zhang, D. X., Baek, J. I.: Precise asymptotics in the law of the logarithm. Manuscript, 2003

  11. Zhang, L. X., Lin, Z. Y.: Precise rates in the law of the logarithm under minimal conditions. Chinese J. Appl. Probab. Statist., 22, 311–320 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Mogul’skiĭ, A. A.: Small deviations in a space of trajectories. Theory Probab. Appl., 19, 726–736 (1974)

    Article  Google Scholar 

  13. Ciesielski, Z., Taylor, S. J.: First passage times and sojourn times for Brownain motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc., 103, 434–450 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feller, W.: The law of the iterated logarithm for identically distributed random variables. Ann. Math., 47, 631–638 (1945)

    Article  MathSciNet  Google Scholar 

  15. Einmahl, U.: The Darling-Erdös theorem for sums of i.i.d. random variables. Probab. Theory Relat. Fields, 82, 241–257 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shao, Q. M.: A small deviation theorem for independent random variables. Theory Probab. Appl., 40, 191–200 (1995)

    Article  MathSciNet  Google Scholar 

  17. Shao, Q. M.: How small are the increments of partial sums of independent random variables. Scientia Sinica, Ser. A, 34, 1137–1148 (1991)

    Google Scholar 

  18. Sakhanenko, A. I.: On unimprovable estimates of the rate of convergence in the invariance principle. In: Colloquia Math. Soci. János Bolyai, 32, Nonparametric Statistical Inference, Budapest (Hungary), 1980, 779–783

    Google Scholar 

  19. Sakhanenko, A. I.: On estimates of the rate of convergence in the invariance principle. In: Advances in Probab. Theory: Limit Theorems and Related Problems (A. A. Borovkov Ed.), Springer, New York, 1984, 124–135

    Google Scholar 

  20. Sakhanenko, A. I.: Convergence rate in the invariance principle for non-identically distributed variables with exponential moments. In: Advances in Probab. Theory: Limit Theorems for Sums of Random Variables (A. A. Borovkov Ed.), Springer, New York, 1985, 2–73

    Google Scholar 

  21. Csörgő, M., Révész, P.: Strong Approximations in Probability and Statistics, Academic Press, New York, 1981

    Google Scholar 

  22. Esseen, C. G.: On the concentration function of a sum of independent random variables. Z. Wahrscheinlichkeitsthorie Verw. Gebiete, 9, 290–308 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  23. Petrov, V. V.: Limit Theorems of Probability Theory, Oxford University Press, Oxford, 1995

    MATH  Google Scholar 

  24. Billingsley, P.: Convergence of Probability Measures, Wiley, New York, 1968

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Xin Zhang.

Additional information

Supported by National Natural Science Foundation of China (Grant No. 10771192) and Natural Science Foundation of Zhejiang Province (Grant No. J20091364)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, LX., Chen, YY. On the rates of the other law of the logarithm. Acta. Math. Sin.-English Ser. 28, 781–792 (2012). https://doi.org/10.1007/s10114-011-0082-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-011-0082-z

Keywords

MR(2000) Subject Classification

Navigation