Skip to main content

Oriented tree diagram Lie algebras and their abelian ideals

Abstract

We introduce oriented tree diagram Lie algebras which are generalized from Xu’s both upward and downward tree diagram Lie algebras, and study certain numerical invariants of these algebras related to abelian ideals.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Xu, X.: Tree diagram Lie algebras of differential operators and evolution partial differential equations. J. Lie Theory, 16, 691–718 (2006)

    MATH  MathSciNet  Google Scholar 

  2. [2]

    Suter, R.: Abelian ideals in a Borel subalgebra of a complex simple Lie algebra. Invent. Math., 156, 175–221 (2004)

    MATH  Article  MathSciNet  Google Scholar 

  3. [3]

    Kostant, B.: Powers of the Euler product and commutative subalgebras of a complex Lie algebra. Invent. Math., 158, 181–226 (2004)

    MATH  Article  MathSciNet  Google Scholar 

  4. [4]

    Schur, I.: Zur Theorie der vertauschbaren Matrizen. J. Reine Angrew. Math., 130, 66–76 (1905)

    Google Scholar 

  5. [5]

    Jacobson, N.: Schur’s theorems on commutative matrices. Bull. Amer. Math. Soc., 50, 431–436 (1944)

    MATH  Article  MathSciNet  Google Scholar 

  6. [6]

    Malcev, A.: Commutative subalgebras of semi-simple Lie algebras. Bull. Acad. Sci. URSS Sér. Math., 9, 291–300 (1945)

    MATH  MathSciNet  Google Scholar 

  7. [7]

    Kostant, B.: Eigenvalues of a Laplacian and commutative Lie subalgebras. Topology, 3, 147–159 (1965)

    Article  MathSciNet  Google Scholar 

  8. [8]

    Kostant, B.: The set of abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations. Int. Math. Res. Not., 5, 225–252 (1998)

    Article  MathSciNet  Google Scholar 

  9. [9]

    Panyushev, D., Röhrle, G.: Spherical orbits and abelian ideals. Adv. Math., 159, 229–246 (2001)

    MATH  Article  MathSciNet  Google Scholar 

  10. [10]

    Panyushev, D.: Abelian ideals of a Borel subalgebra and long positive roots. Int. Math. Res. Not., 1889–1913 (2003)

  11. [11]

    Luo, L.: Abelian ideals and cohomology of symplectic type. Proc. Amer. Math. Soc., 137, 479–485 (2009)

    MATH  Article  MathSciNet  Google Scholar 

  12. [12]

    Andrews, G., Krattenthaler, C., Orsina, L., Papi, P.: Ad-Nilpotent B-ideals in sl(n) having a fixed class of nilpotence: combinatorics and enumeration. Trans. Amer. Math. Soc., 354, 3835–3853 (2002)

    MATH  Article  MathSciNet  Google Scholar 

  13. [13]

    Cellini, P., Papi, P.: Ad-nilpotent ideals of a Borel subalgebra I. J. Algebra, 225, 130–141 (2000)

    MATH  Article  MathSciNet  Google Scholar 

  14. [14]

    Cellini, P., Papi, P.: Enumeration of ad-nilpotent ideals of a Borel subalgebra in type A by a class of nilpotence. C. R. Acad. Math. Paris, Sér. I, Math., 330, 651–655 (2000)

    Google Scholar 

  15. [15]

    Cellini, P., Papi, P.: Ad-nilpotent ideals of a Borel subalgebra II. J. Algebra, 258, 112–121 (2002)

    MATH  Article  MathSciNet  Google Scholar 

  16. [16]

    Cellini, P., Papi, P.: Abelian ideals of Borel subalgebras and affine Weyl groups. Adv. Math., 187, 320–361 (2004)

    MATH  Article  MathSciNet  Google Scholar 

  17. [17]

    Krattenthaler, C., Orsina, L., Papi, P.: Enumeration of ad-nilpotent B-ideals for simple Lie algebras. Adv. Appl. Math., 28, 478–522 (2002)

    MATH  Article  MathSciNet  Google Scholar 

  18. [18]

    Luo, L.: Cohomology of oriented tree diagram Lie algebras. Comm. Algebra, 37, 965–984 (2009)

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Li Luo.

Additional information

Supported by Shanghai Leading Academic Discipline Project (Project No. B407)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Luo, L. Oriented tree diagram Lie algebras and their abelian ideals. Acta. Math. Sin.-English Ser. 26, 2041–2058 (2010). https://doi.org/10.1007/s10114-010-8455-2

Download citation

Keywords

  • Abelian ideal
  • tree diagram
  • solvable Lie algebra

MR(2000) Subject Classification

  • 17B05
  • 17B30